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Abstract

The local linear embedding algorithm (LLE) is a non-linear dimension-reducing
technique that is widely used for its computational simplicity and intuitive approach.
LLE first linearly reconstructs each input point from its nearest neighbors and then
preserves these neighborhood relations in a low-dimensional embedding. We show
that the reconstruction weights computed by LLE capture the high-dimensional
structure of the neighborhoods, and not the low -dimensional manifold structure.
Consequently, the weight vectors are highly sensitive to noise. Moreover, this causes
LLE to converge to a linear projection of the input, as opposed to its non-linear
embedding goal. To resolve both of these problems, we propose to compute the
weight vectors using a low-dimensional neighborhood representation. We call this
technique LDR-LLE. We prove theoretically that this straightforward and com-
putationally simple modification of LLE reduces LLE’s sensitivity to noise. This
modification also removes the need for regularization when the number of neigh-
bors is larger than the dimension of the input. We present numerical examples of the
perturbation and linear projection problems, and of the improved outputs resulting
from the low-dimensional neighborhood representation.

Key words: Locally Linear Embedding (LLE), dimension reduction , manifold
learning

1 Introduction

The local linear embedding algorithm (LLE) [1] belongs to a class of recently
developed non-linear dimension-reducing algorithms that include Isomap [2],

∗ Corresponding author.
Email addresses: yair.goldberg@mail.huji.ac.il (Y. Goldberg),

yaacov.ritov@huji.ac.il (Y. Ritov).

Preprint submitted to Pattern Recognition 9 June 2009



Laplacian Eigenmap [3], Hessian Eigenmap [4], LTSA [5], and MVU [6]. The
underlying assumption when using this group of algorithms is that the data is
sitting on, or next to, an embedded manifold of low dimension within the origi-
nal high-dimensional space. The goal of the algorithms is to find an embedding
that maps the input points to the lower-dimensional space. Here a manifold is
defined as a topological space that is locally equivalent to a Euclidean space.
LLE was found to be useful in data visualization [1,7] and in image processing
applications such as image denoising [8] and human face detection [9]. It is
also applied in different fields of science, such as chemistry [10], biology [11],
and astrophysics [12].

LLE attempts to recover the domain structure of the input data set in three
steps. First, LLE assigns neighbors to each input point. Second, for each input
point LLE computes weight vectors that best linearly reconstruct the input
point from its neighbors. Finally, LLE finds a set of low-dimensional output
points that minimize the sum of reconstruction errors, under some normaliza-
tion constraints.

In this paper we focus on the computation of the weight vectors in the sec-
ond step of LLE. We show that LLE’s neighborhood description captures the
structure of the high-dimensional space, and not that of the low -dimensional
domain. We show two main consequences of this observation. First, the weight
vectors are highly sensitive to noise. This implies that a small perturbation
of the input may yield an entirely different embedding. Second, we show that
LLE converges to a linear projection of the high-dimensional input when the
number of input points tends to infinity. Numerical results that demonstrate
our claims are provided.

To resolve these problems, we suggest a simple modification of the second step
of LLE, LLE with low-dimensional neighborhood representation (LDR-LLE).
Our approach is based on finding the best low-dimensional representation
for the neighborhood of each point, and then computing the weights with
respect to these low-dimensional neighborhoods. This proposed modification
preserves LLE’s principle of reconstructing each point from its neighbors. It
is of the same computational complexity as LLE and it removes the need to
use regularization when the number of neighbors is greater than the input
dimension. We presented this algorithm in a recent work [13] without the
theoretical proofs that are presented here.

In this work we present detailed theoretical justification for the LDR-LLE al-
gorithm. We prove that the weights computed by LDR-LLE are robust against
noise. We also prove that when the LDR-LLE is used on input points sam-
pled from a manifold that is conformally embedded manifold, the pre-image
of the input points achieves a low value of the objective function. Finally, we
demonstrate in several numerical examples that there is an improvement in
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the output of LLE when low-dimensional neighborhood representation is used.

There are other works that suggest improvements for LLE. The Efficient
LLE [14] and the Robust LLE [15] algorithms both address the problem of
outliers by preprocessing the input data. Other versions of LLE, including
ISOLLE [16] and Improved LLE [17], suggest different ways to compute the
neighbors of each input point in the first step of LLE. The Modified LLE
algorithm [18] proposes to improve LLE by using multiple local weight vec-
tors in LLE’s second step, thus characterizing the high-dimensional neigh-
borhood more accurately. All of these algorithms attempt to characterize the
high-dimensional neighborhoods, and not the low -dimensional neighborhood
structure.

Other algorithms can be considered variants of LLE. Laplacian Eigenmap
essentially computes the weight vectors using regularization with a large regu-
larization constant (see discussion on the relation between LLE and Laplacian
Eigenmap in [3], Section 5). Hessian Eigenmap [4] characterizes the local in-
put neighborhoods using the null space of the local Hessian operator, and
minimizes the appropriate function for the embedding. Closely related is the
LTSA algorithm [5], which characterizes each local neighborhood using its lo-
cal PCA. These last two algorithms attempt to describe the low-dimensional
neighborhood. However, these algorithms, like Laplacian Eigenmap, do not use
LLE’s intuitive approach of reconstructing each point from its neighbors. Our
proposed modification provides a low-dimensional neighborhood description
while preserving LLE’s intuitive approach.

The paper is organized as follows. The description of LLE is presented in Sec-
tion 2. The discussion of the second step of LLE appears in Section 3. The
suggested modification of LLE is presented in Section 4. Theoretical results
regarding LLE with low-dimensional neighborhood representation appear in
Section 5. In Section 6 we present numerical examples. The proofs are pre-
sented in the Appendix.

2 Description of LLE

The input data X = {x1, . . . , xN}, xi ∈ RD for LLE is assumed to be sitting
on or next to a d-dimensional manifoldM. We refer to X as an N×D matrix,
where each row stands for an input point. The goal of LLE is to recover the
underlying d-dimensional structure of the input data X. LLE attempts to do
so in three steps.

First, LLE assigns neighbors to each input point xi. This can be done, for
example, by choosing the input point’s K-nearest neighbors based on the Eu-
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clidian distances in the high-dimensional space. Let the neighborhood matrix
of xi be denoted by Xi, where Xi is the K ×D matrix with rows ηj − xi and
ηj is the j-th neighbor of xi.

Second, LLE computes weights wij that best linearly reconstruct xi from its
neighbors. These weights minimize the reconstruction error function

ϕi(wi) = ‖xi −
∑
j

wijxj‖2 , (1)

where wij = 0 if xj is not a neighbor of xi, and
∑
j wij = 1. With some

abuse of notation, we will also refer to wi as a K × 1 vector, where we omit
the entries of wi for non-neighbor points. Using this notation, we may write
ϕi(wi) = w′iXiX

′
iwi.

Finally, given the weights found above, LLE finds a set of low-dimensional
output points Y = {y1, . . . , yN} ∈ Rd that minimize the sum of reconstruction
errors

Φ(Y ) =
N∑
i=1

‖yi −
∑
j

wijyj‖2 , (2)

under the normalization constraints Y ′1 = 0 and Y ′Y = I, where 1 is vector
of ones, and for any matrix A, A′ is the transpose of A. These constraints
force a unique minimum of the function Φ.

The function Φ(Y ) can be minimized by finding the d-bottom non-zero eigen-
vectors of the sparse matrix (I − W )′(I − W ), where W is the matrix of
weights. Note that the p-th coordinate (p = 1, . . . , d), found simultaneously
for all output points yi, is equal to the eigenvector with the p-smallest non-
zero eigenvalue. This means that the first p coordinates of the LLE solution
in q dimensions, p < q, are exactly the LLE solution in p dimensions [1,19].
Equivalently, if an LLE output of dimension q exists, then a solution for di-
mension p, p < q, is merely a linear projection of the q-dimensional solution
on the first p dimensions.

When the number of neighbors K is greater than the dimension of the input
D, each data point can be reconstructed perfectly from its neighbors, and
the local reconstruction weights are no longer uniquely defined. In this case,
regularization is needed and one needs to minimize

ϕreg
i (wi) = ‖xi −

∑
j

wijxj‖2 + δ‖wi‖2 , (3)

where δ is a small constant. Saul and Roweis [19] suggested δ = ∆
K

trace(XiX
′
i)

with ∆ � 1. Regularization can be problematic for the following reasons.
When the regularization constant is not small enough, it was shown by Zhang
and Wang [18] that the correct weight vectors cannot be well approximated
by the minimizer of ϕreg

i (wi). Moreover, when the regularization constant is
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relatively high, it produces weight vectors that tend towards the uniform vec-
tors wi = (1/K, . . . , 1/K). Consequently, the solution for LLE with a large
regularization constant is close to that of the Laplacian Eigenmap algorithm,
and does not reflect a solution based on reconstruction weight vectors (see [3],
Section 5). In addition, Lee and Verleysen [20] demonstrated that the regu-
larization parameter must be tuned carefully, since LLE can yield completely
different embeddings for different values of this parameter. However, in real-
world data the dimension of the input is typically greater than the number of
neighbors. Hence, for real-world data, regularization is usually unnecessary.

3 Preservation of high-dimensional neighborhood structure by LLE

In this section we focus on the computation of the weight vectors, which is
performed in the second step of LLE. We first show that LLE characterizes
the high-dimensional structure of the neighborhood. We explain how this can
lead to the failure of LLE to find a meaningful embedding of the input. Two
additional consequences of preservation of the high-dimensional neighborhood
structure are discussed. First, LLE’s weight vectors are sensitive to noise.
Second, LLE’s output tends toward a linear projection of the input data when
the number of input points tends to infinity. These claims are demonstrated
using numerical examples.

We begin by showing that LLE preserves the high-dimensional neighborhood
structure. We use the example that appears in Fig. 1. The input is a sam-
ple from an open ring which is a one-dimensional manifold embedded in R2.
For each point on the ring, we define its neighborhood using its 4 nearest
neighbors. Note that its high-dimensional (D = 2) neighborhood structure is
curved, while the low -dimensional structure (d = 1) is a straight line. The
two-dimensional output of LLE (see Fig. 1) is essentially a reconstruction of
the input. In other words, LLE’s weight vectors preserve the curved shape of
each neighborhood.

The one-dimensional output of the open ring is presented in Fig. 1C. Recall
that the one-dimensional solution is a linear projection of the two-dimensional
solution, as explained in Section 2. In the open-ring example, LLE clearly fails
to find an appropriate one-dimensional embedding, because it preserves the
two-dimensional curved neighborhood structure. We shall now show that this
holds true in some additional cases.

The swissroll output in Fig. 2B shows that the overall three-dimensional struc-
ture of the swissroll is preserved in the three-dimensional embedding. The two-
dimensional output of LLE appears in Fig. 2C. It can be seen that LLE does
not succeed in finding a meaningful embedding in this case. Fig. 3 presents
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Fig. 1. The input for LLE is the 16-point open ring that appears in (A). The two-di-
mensional output of LLE is given in (B). LLE finds and preserves the two-dimen-
sional structure of each of the local neighborhoods. The one-dimensional output of
LLE appears in (C). Note that LLE fails to unfold the ring (compare to Fig. 6). The
computation was performed using 4-nearest-neighbors, and regularization constant
∆ = 10−9.

the ‘S’ curve, with similar results.

We performed LLE, here and in all other examples, using the LLE Matlab
code as it appears on the LLE website 1 . The code that produced the input
data for the swissroll (Fig. 2A) was also taken from the LLE website. We
used the default values of 2000 sample points and K = 12 nearest neighbors,
with ∆ = 10−9 as the regularization constant. It should be noted that using
a large regularization constant improved the results. However, as discussed in
Section 2, the weight vectors produced in this way do not reflect a solution that
is based on reconstruction weight vectors. Instead, the vectors tend toward the
uniform vector.

The ‘S’ curve data (Fig 3A) was obtained by embedding the 2000-point sam-
ple produced using the code taken from the LLE website in RD, with D = 15.
This embedding was obtained by adding a normal random vector with zero
mean and 10−6I variance matrix to each point. We used K = 12 in the
computation. Since K < D, no regularization is needed. The failure to find
the low-dimensional embedding is, therefore, inherent and is not due to the
choice of regularization constant. It should be noted that roughly the same
result was obtained when using the original three-dimensional ‘S’ curve with
∆ = 10−9. The open ring, swissroll, and ‘S’ curve datasets can be found at
http://pluto.huji.ac.il/~yaacov/ldr_code.

We now discuss the sensitivity of LLE’s weight vectors {wi} to noise. Figure 4
shows that an arbitrarily small change in the neighborhood can cause a large
change in the weight vectors. This result can be understood by noting how
the vector wi is obtained. It can be shown [19] that wi equals (XiX

′
i)
−11, up

1 LLE website: http://www.cs.toronto.edu/~roweis/lle/. The changes in the
Matlab function eigs were taken into account.
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Fig. 2. (A) LLE’s input, a 2000-point swissroll. (B) The three-dimensional output
of LLE. It can be seen that LLE finds the overall three-dimensional structure of the
input. (C) The two-dimensional output of LLE. Note that LLE fails to unfold the
swissroll (compare to Fig. 7).

Fig. 3. (A) The first three dimensions of LLE’s input, a 2000-point ‘S’ curve em-
bedded in R15. (B) The three-dimensional output of LLE. It can be seen that LLE
finds the overall three-dimensional structure of the input. (C) The two-dimensional
output of LLE. Note that LLE fails to unfold the ‘S’ curve (compare to Fig. 8).

to normalization. Sensitivity to noise is therefore expected when the condition
number of XiX

′
i is large (see [21], Section 2). One way to solve this problem

is to enforce regularization, with its associated problems (see Section 2). We
note that the sensitivity of LLE’s weights to noise means that two similar
inputs can result in widely varying outputs. This is clearly an undesirable
property, since the parametric representation of two similar inputs is expected
be similar. In the next section we suggest a simple alternative solution to the
sensitivity of LLE to noise.

One more implication of the fact that LLE preserves the high-dimensional
neighborhood structure is that LLE’s output tends to a linear projection of
the input data. Wu and Hu [22] proved for a finite data set that when the
reconstruction errors are exactly zero for each of the neighborhoods, and under
some dimensionality constraint, the output of LLE must be a linear projection
of the input data. Here, we present a simple argument that explains why
LLE’s output tends to a linear projection when the number of input points
tends to infinity, and show numerical examples that strengthen this claim. For
simplicity, we assume that the input data is normalized.
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Fig. 4. The effect of a small perturbation on the weight vector computed by LLE.
All three panels show the same unperturbed neighborhood, consisting of a point
and its four nearest-neighbors (black points), all sitting in the two-dimensional
plane. Each panel shows a different small perturbation of the original neighborhood
(gray points). All perturbations are in the direction orthogonal to the plane of the
original neighborhood. (A) and (C): Both perturbations are in the same direction.
(B) Perturbations are of equal size, in opposite directions. The unique weight vector
for the center point is denoted for each case. These three different weight vectors
vary widely, even though the different perturbations can be arbitrarily small.

Our argument is based on two claims. First, note that LLE’s output for dimen-
sion d is a linear projection of LLE’s output for dimension D (see Section 2).
Second, note that by definition, the LLE output is a set of points Y that
minimizes the sum of reconstruction errors Φ(Y ). For normalized input X of
dimension D, when the number of input points tends to infinity, each point
is well reconstructed by its neighboring points. Therefore the reconstruction
error ϕi(w) tends to zero for each point xi. This means that the input data X
tends to minimize the sum of reconstruction errors Φ(Y ). Hence, the output
points Y of LLE for output of dimension D tend to the input points (up to
a rotation). The result of these two claims is that any requested solution of
dimension d < D tends to a linear projection of the D-dimensional solution,
i.e., a linear projection of the input data.

The result that LLE tends to a linear projection is of an asymptotical nature.
However, numerical examples show that this phenomenon can occur even when
the number of points is relatively small. This is indeed the case for the outputs
of LLE shown in Figs. 1C, 2C, and 3C, for the open ring, the swissroll, and
the ‘S’ curve, respectively.

4 LDR-LLE: Low-dimensional neighborhood representation for LLE

In this section we suggest a simple modification of LLE that computes the
low-dimensional structure of the input points’ neighborhoods. Our approach
is based on finding the best representation of rank d (in the l2 sense) for the
neighborhood of each point, and then computing the weights with respect to
these d-dimensional neighborhoods. In Sections 5 and 6 we show theoretical
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results and numerical examples that justify our suggested modification.

We begin by finding a rank-d representation for each local neighborhood. Re-
call that Xi is the K×D neighborhood matrix of xi, whose j-th row is ηj−xi,
where ηj is the j-th neighbor of xi. We assume that the number of neighbors
K is greater than d, since otherwise xi cannot (in general) be reconstructed
by its neighbors. We say that XP

i is the best rank-d representation of Xi, if
XP
i minimizes ‖Xi − Y ‖2 over all the K ×D matrices Y of rank d. Let ULV ′

be the SVD of Xi, where U and V are orthogonal matrices of size K ×K and
D×D, respectively, and L is a K×D matrix, where Ljj = λj are the singular
values of Xi for j = min(K,D), ordered from the largest to the lowest, and
Lij = 0 for i 6= j. We denote

U =
(
U1, U2

)
; L =

L1, 0

0, L2

 ; V =
(
V1, V2

)
(4)

where U1 = (u1, . . . , ud) and V1 = (v1, . . . , vd) are the first d columns of U and
V , respectively, U2 and V2 are the last K − d and D− d columns of U and V ,
respectively, and L1 and L2 are of dimension d × d and (K − d) × (D − d),
respectively. Then by Corollary 2.3-3 of Golub and Van Loan [21], XP

i can be
written as U1L1V

′
1 .

We now compute the weight vectors for the d-dimensional neighborhood XP
i .

By (1), we need to find wi that minimize w′iX
P
i X

P
i
′
wi (see Section 2). The

solution for this minimization problem is not unique, since by the construction
all the vectors spanned by ud+1, . . . , uK zero this function. Thus, our candidate
for the weight vector is the vector in the span of ud+1, . . . , uK that has the
smallest l2 norm. In other words, we are looking for

argmin
wi∈span{ud+1,...,uK}

w′
i1=1

‖wi‖2 . (5)

Note that we implicitly assume that 1 /∈ span{u1, . . . , ud}. This is true when-
ever the neighborhood points are in general position, i.e., no d + 1 of them
lie in a (d − 1)-dimensional plane. To understand this, note that if 1 ∈
span{u1, . . . , ud}, then (I− 1

K
11′)XP

i = (I− 1
K
11′)U1L1V

′
1 is of rank d−1. Since

(I− 1
K
11′)XP

i is the projected neighborhood after centering, we obtained that
the dimension of the centered projected neighborhood is of dimension d − 1,
and not d as assumed, and therefore the points are not in general position.
See also Assumption (A2) in Section 5 and the discussion that follows.

The following lemma shows how to compute the vector wi that minimizes (5).
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Lemma 1 Assume that the points of XP
i are in general position. Then the

vector wi that minimizes (5) is given by

wi =
U2U2

′1

1′U2U2
′1
. (6)

The proof is based on Lagrange multipliers and appears in Appendix A.1.

Following Lemma 1, we propose a simple modification of LLE based on com-
puting the reconstruction vectors using d-dimensional neighborhood represen-
tation.

The LDR-LLE algorithm:
LLE with low-dimensional neighborhood representation

Input: X, an N ×D matrix.
Output: Y , an N × d matrix.

Procedure:

(1) For each point xi find K-nearest-neighbors and compute the neighbor-
hood matrix Xi.

(2) For each point xi compute the weight vector wi using the d-dimensional
neighborhood representation:
• Use the SVD decomposition to write Xi = ULV ′.
• Write U2 = (ud+1 . . . , uK).
• Compute

wi =
U2U2

′1

1′U2U2
′1
.

(3) Compute the d-dimension embedding by minimizing Φ(Y ) (see (2)).

Note that the difference between this algorithm and LLE is in step (2). We
compute the low-dimensional neighborhood representation of each neighbor-
hood and obtain its weight vector, while LLE computes the weight vector
for the original high-dimensional neighborhoods. One consequence of this ap-
proach is that the weight vectors wi are less sensitive to perturbation, as
shown in Theorem 2. Another consequence is that the d-dimensional output is
no longer a projection of the embedding in dimension q, q > d. This is because
the weight vectors wi are computed differently for different values of output
dimension d. In particular, the input data no longer minimize Φ, and therefore
the linear projection problem does not arise.

From a computational point of view, the cost of this modification is small. For
each point xi, the cost of computing the SVD of the matrix Xi is O(DK3).
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For N neighborhoods we have O(NDK3), which is of the same scale as LLE
for this step. Since the overall computation of LLE is O(N2D), the overhead
of the modification has little influence on the running time of the algorithm
(see [19], Section 4).

In practice, we found that when the dimension of the input is much larger
than the number of neighbors, the result was improved by using convex weight
vectors as suggested by LLE’s authors (see [19], Section 5.2). Since the solution
in convex weights does not necessarily exists, we suggest to minimize the
function

‖w′iXP
i ‖2 + δ‖wi‖2

under the constraints w′i1 = 1 and wij ≥ 0, where δ is some regularization
constant. Note that we minimize the same function as in LLE (see (3)) except
that we replace the high-dimensional represention Xi used by LLE by the
low-dimensional neighborhood representation XP

i . From computational point
of view, the minimizer is found using quadratic programming which can be
solved in polynomial time in K (see [23]).

5 Theoretical results

In this section we prove two theoretical results regarding the computation of
LDR-LLE. We first show that a small perturbation of the neighborhood has a
small effect on the weight vector. Then we show that the set of original points
in the low-dimensional domain that are the pre-image of the input points
achieves a low value of the objective function Φ.

We start with some definitions. Let Ω ⊂ Rd be a compact set and let f : Ω→
RD be a smooth conformal mapping. This means that the inner products on
the tangent bundle at each point are preserved up to a scalar c that may
change continuously from point to point. Note that the class of isometric
embeddings is included in the class of conformal embeddings. Let M be the
d-dimensional image of Ω in RD. Assume that the input X = {x1, . . . , xN}
is a sample taken from M. For each point xi, define the neighborhood Xi

and its low-dimensional representation XP
i as in Section 4. Let Xi = ULV ′

and XP
i = U1L1V1

′ be the SVDs of the i-th neighborhood and its projection,
respectively. Denote the singular values of Xi by λi1 ≥ . . . ≥ λiK , where λij = 0
if D < j ≤ K. Denote the mean vector of the projected i-th neighborhood by
µi = 1

K
1′XP

i .

For the proofs of the theorems we require that the local high-dimensional
neighborhoods satisfy the following two assumptions:

(A1) For each i, λid+1 � λid.
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(A2) There is an α < 1 such that for all i, 1
K
1′U1U1

′1 < α.

The first assumption states that for each i, the neighborhood Xi is essentially

d-dimensional. For our purposes it enough to demand λid+1 < min
{

(λid)
2,

λi
d

72

}
.

The second assumption was shown to be equivalent to the requirement that
points in each projected neighborhood be in general position (see discussion
in Section 3). We now show that this is equivalent to the requirement that the
variance-covariance matrix of the projected neighborhood is not degenerate.
Denote S = 1

K
XP
i
′
XP
i = 1

K
V1L

2
1V1
′; then

1

K
1′U1U1

′1 =
1

K
1′(U1L1V1

′)(V1L
−2
1 V1

′)V1L1U1
′1 = µ′S−1µ .

Note that since S − µµ′ is positive definite, so is I − S−1/2µµ′S−1/2. Since the
only eigenvalues of I − S−1/2µµ′S−1/2 are 1 and 1 − µ′S−1µ, we obtain that
µ′S−1µ < 1.

Theorem 2 Let Ei be a K×D matrix such that ‖Ei‖F = 1. Let X̃i = Xi+εEi
be a perturbation of the i-th neighborhood. Assume (A1) and (A2) and ε <

min
(

(λi
d)4

72
,

(λi
d)2(1−α)

72

)
and that λi1 < 1. Let wi and w̃i be the weight vectors for

Xi and X̃i, respectively, as defined by (5). Then

‖wi − w̃i‖ <
20ε

(λid)
2(1− α)

.

See proof in Appendix A.3. Note that the assumption that λi1 < 1 can always
be fulfilled by rescaling the matrix Xi since rescaling the input matrix X has
no influence on the value of wi.

Fig. 4 demonstrates why no bound similar to Theorem 2 exists for the weights
computed by LLE. In the example we see a point on the grid with its 4-nearest
neighbors, where some noise was added. While λ1 ≈ λ2 ≈ 1− α ≈ 1, and ε is
arbitrary, the distance between each pair of vectors is at least 1

2
. The bound

of Theorem 2 states that for ε = 10−2, 10−4, and 10−6 the upper bound on
the distance when using the low-dimensional neighborhood representation is
20 · 10−2, 20 · 10−4, and 20 · 10−6, respectively. The empirical results shown in
Fig. 5 are even lower.

For the second theoretical result we require some additional definitions.

The minimum radius of curvature r0 = r0(M) is defined to be:

1

r0

= max
γ,t
{‖γ̈(t)‖} ,
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Fig. 5. The effect of neighborhood perturbation on the weight vectors of LLE and
of LLE with low-dimensional neighborhood representation. The original neighbor-
hood consists of a point on the two-dimensional grid and its 4-nearest neighbors,
as in Fig. 4. A 6-dimensional noise matrix εE where ‖E‖F = 1 was added to the
neighborhood for ε = 10−2, 10−4, and 10−6, with 1000 repetitions for each value of
ε. Note that no regularization is needed since K < D. The graphs show the distance
between the vector w =

(
1
4 , 1

4 , 1
4 , 1

4

)
and the vectors computed by LLE (in green)

and by LLE with low-dimensional neighborhood representation (in blue). Note the
log scale in the y axis.

where γ varies over all unit-speed geodesics in M and t is in a domain of γ.
The minimum branch separation s0 = s0(M) is defined as the largest positive
number for which ‖x− x̃‖ < s0 implies that dM(x, x̃) ≤ πr0, where x, x̃ ∈M,
and dM(x, x̃) are the geodesic distance between x and x̃ (for both definitions,
see [24]).

Define the radius r(i) of neighborhood i to be

r(i) = max
j∈{1,...,K}

‖ηj − xi‖

where ηj is the j-th neighbor of xi. Finally, define rmax to be the maximum
over r(i) .

We say that the sample is dense with respect to the chosen neighborhoods if
rmax < s0. Note that this condition depends on the manifold structure, the
given sample, and the choice of neighborhoods. However, for a given compact
manifold, if the distribution that produces the sample is supported through-
out the entire manifold, then this condition is valid with probability increasing
towards 1 as the size of the sample is increased and the radius of the neigh-
borhoods is decreased.

Theorem 3 Let Ω be a compact convex set. Let f : Ω → RD be a smooth
conformal mapping. Let X be an N-point sample taken from f(Ω), and let
Z = f−1(X), i.e., zi = f−1(xi). Assume that the sample X is dense with
respect to the choice of neighborhoods and that assumptions (A1)and (A2)
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Fig. 6. The outputs of LLE, LDR-LLE, Laplacian Eigenmap, and LTSA for the
open ring (Fig. 1A) appear in (A),(B),(C) and (D), respectively. Note that LLE
projects the input. LDR-LLE, as well as LTSA, succeed in unfolding the ring. The
Laplacian Eigenmap succeeds to some degree.

.

Fig. 7. The outputs of LLE, LDR-LLE, Laplacian Eigenmap, and LTSA for the
swissroll (see Fig. 2A) appear in (A),(B),(C) and (D), respectively. Note that LLE
projects the input. LDR-LLE, as well as LTSA succeed in unfolding the swissroll.
An explantation to ‘U’ shape obtained by Laplacian Eigenmap can be found in [25].

.

hold. Then, if the weight vectors are chosen according to (6),

Φ(Z)

N
= max

i
λid+1O

(
r2

max

)
. (7)

See proof in Appendix A.3.

The theorem states that the original pre-image data Z has a small value of Φ
and thus is a reasonable embedding, although not necessarily the minimizer
(see [25]). This observation is not trivial for two reasons. First, it is not known
apriori that {f−1(ηj)}, the pre-image of the neighbors of xi, are also neighbors
of zi = f−1(xi). When short circuits occur, this need not be true (see [26]). Sec-
ond, the weight vectors {wi} characterize the projected neighborhood, which
is only an approximation to the true neighborhood. Nevertheless, the theorem
shows that Z has a low Φ value.
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Fig. 8. The outputs of LLE, LDR-LLE, Laplacian Eigenmap, and LTSA for the
‘S’ curve (see Fig. 3A) appear in (A),(B),(C) and (D), respectively. Note that LLE
projects the input. LDR-LLE, as well as Laplacian Eigenmap and LTSA, succeed
in unfolding the ‘S’ curve.

.

6 Numerical results

In this section we present the results of LLE and LDR-LLE on six datasets that
include both synthetic and real-world data. We compare the results of LLE and
LDR-LLE to the results obtained by Laplacian Eigenmap [3] and LTSA [5].
We chose to compare to these widely-used algorithms since their scheme is
close to that of LLE, but their neighborhood representation is different. The
Laplacian Eigenmap neighborhood representation is held by a weight vector
with ones for neighbors and zero for non-neighbors 2 . Note that the Laplacian
Eigenmap weight vector holds less information than that of LLE. The LTSA
neighborhood representation is given by a projection matrix that projects the
neighborhood on the last (K − d) principal directions (see discussion in [27],
Section 2.8). Zhang and Wang showed the connection between LTSA’s weight
matrix and the LLE’s weights when using multiple weight vectors (see [18],
Section 5).

For LLE, we used the Matlab code as it appears on the LLE website 3 . For
Laplacian Eigenmap and LTSA we used the Matlab implementation written
by the respective algorithms’ authors as provided by the Manifold Learning
Matlab Demo website 4 . The code of LDR-LLE, which is based on the LLE
code and differs only in step (2) of the algorithm, as well as all the datasets,
are available at http://pluto.huji.ac.il/~yaacov/ldr_code.

We ran LDR-LLE, Laplacian Eigenmap, and LTSA on the open ring, the ‘S’
curve, and the swissroll datasets that appear in Figs. 1, 2, and 3. We used
the parameters listed earlier for all algorithms (K = 4 for the open ring and

2 We use here the simple neighborhood description suggested by Laplacian Eigen-
map. One can also defines the weights using the heat kernel (see [3], Section 2).
3 LLE website: http://www.cs.toronto.edu/~roweis/lle/.
4 Manifold Learning Matlab Demo website: http://www.math.umn.edu/

~wittman/mani/.
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Fig. 9. Two-dimensional projection of the three-dimensional output of LLE for the
faces database appear in (A). The left panel is colored according to the right-left
pose, the middle panel is colored according to the up-down pose, and the right panel
is colored according to the lighting direction. The outputs of Laplacian Eigenmap
and LTSA appear in (B) and (C), respectively. Note that LLE finds the right-left
pose to some degree, but does not find the other parameters.

K = 12 for the swissroll and the ‘S’ curve). The results for the open ring, the
swissroll, and the ‘S’ curve appear in Figs. 6,7, and 8, respectively.

We ran LLE, LDR-LLE using convex weights, Laplacian Eigenmap, and LTSA
on 64 by 64 pixel images of a face, rendered in different poses and lighting di-
rections. The 698 images and their respective poses and lighting directions can
be found at the Isomap webpage 5 . The results of LLE, Laplacian Eigenmap,
and LTSA, with K = 8 are given in Fig. 9. The results for LDR-LLE repre-
sentation, also with K = 8, appear in Fig. 10. We also checked for K = 12, 16;
in all cases LLE does not succeed in fully recovering the pose or lighting direc-

5 Isomap wepage: http://isomap.stanford.edu/.
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Fig. 10. The output of LDR-LLE is colored according to the left-right pose.
LDR-LLE also succeeds in finding the up-down pose. The lighting direction is not
fully recovered.

Fig. 11. The outputs of LLE, LDR-LLE, Laplacian Eigenmap, and LTSA for 300
satellite images of the globe, colored according to the azimuthal direction, appear in
(A),(B),(C) and (D), respectively. Note that LDR-LLE finds a meaningful two-di-
mensional embedding. LLE, as well as Laplacian Eigenmap and LTSA, collapses to
a one-dimensional curve

.

tions. LDR-LLE and Laplacian Eigenmap succeed in recovering two directions.
LTSA succeeds in recovering one to two directions, depending on the number
of neighbors. The reason that none of these algorithms succeeds to fully recover
all the three directions may be due to dimension collapse (see [25]).

We ran LLE, LDR-LLE using convex weights, Laplacian Eigenmap, and LTSA
on a data set of 300 satellite images of the globe, each 100× 100 pixels. The
images were obtained by changing the globe’s azimuthal and elevation angles.
The parameters of the variations are given by a 30×10 array that contains −45
to 45 degrees of azimuth and 0 to 30 degrees of elevation (see [28]). The results

17



Fig. 12. The outputs of LLE, LDR-LLE, Laplacian Eigenmap, and LTSA for 50
images, with ten images for each face, appear in (A),(B),(C) and (D), respectively.
Different colors denote different faces. It seems that LLE and LLE-LDR succeed in
clustering the images according to face.

.

for K = 12 appear in Fig. 11. The result of LDR-LLE seems satisfactory. LLE,
as well as Laplacian Eigenmap and LTSA, obtain a roughly one-dimensional
curve embedded in R2, perhaps due to dimension collapse (see [25]).

Finally, we ran LLE, LDR-LLE using convex weights, Laplacian Eigenmap,
and LTSA on a dataset of 64 by 64 pixel grayscale face images. The dataset
consists of 50 images of five different faces, with ten images of each face. The
dataset can be found at the AT&T Laboratories webpage 6 . The results for
K = 10 appear in Fig. 12, with different faces denoted by different colors. It
seems that both LLE and LDR-LLE succeed in clustering the images correctly.

7 Summary

In this work we analyzed two limitations of LLE. First, we showed that the
weight vectors computed by LLE are highly sensitive to noise. Second, we
showed that LLE converges to a linear projection of the high-dimensional in-
put when the number of input points tends to infinity. We showed that this
is a result of the fact that LLE captures the high-dimensional structure of
the neighborhoods, and not the low-dimensional manifold structure. To re-
solve these problems, we suggested the algorithm LDR-LLE. The LDR-LLE
algorithm first finds the best low-dimensional representation for the neigh-
borhood of each point, and then computes the weights with respect to these
low-dimensional neighborhoods. The proposed modification preserves LLE’s
principle of reconstructing each point from its neighbors. It is of the same
computational complexity as LLE and it removes the need to use regulariza-
tion when the number of neighbors is greater than the input dimension. We
proved that the weights computed by LDR-LLE are robust against noise. We
also proved that when the LDR-LLE is used on input points sampled from a

6 The faces database at AT&T Laboratories webpage:
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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conformally embedded manifold, the pre-image of the input points achieves a
low value of the objective function. Finally, we demonstrated in several nu-
merical examples that there is an improvement in the output of LLE when
low-dimensional neighborhood representation is used.
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A Proofs

A.1 Proof of Lemma 1

Write wi =
∑K
m=d+1 amum = U2a. The Lagrangian of the problem can be

written as

L(a, λ) =
1

2
a′U2

′U2a+ λ(1′U2a− 1) .

Taking derivatives with respect to both a and λ, we obtain

∂L

∂a
=U2

′U2a− λU2
′1 = a− λU2

′1 ,

∂L

∂λ
= 1′U2a− 1 .

Hence we obtain that a = U2
′1

1′U2U2
′1

.

A.2 Proof of Theorem 2

The proof of Theorem 2 consists of two steps. First, we find a representation
of the vector w̃i, the weight vector of the perturbed neighborhood; see (A.5).
Then we bound the distance between w̃i and wi, the weight vector of the
original neighborhood.

We start with some notations. For every matrix A, let λj(A) be the j-th
singular value of A. Note that ‖A‖2 = λ1(A). In this notation, we have λij =
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λj(Xi). Denote by T = Xi
′Xi and T̃ = X̃ ′iX̃i = T +ε(Xi

′Ei+Ei
′Xi)+ε2Ei

′Ei.
Using the decomposition of (4), we may write T = UL2U ′ and T̃ = Ũ L̃2Ũ ′.
Note that λj(T ) = λj(Xi)

2. Define U2 and Ũ2 to be the K×(K−d) matrices of
the left-singular vectors corresponding to the lowest singular values, as in (4).

Note that by assumption, λ1(Ei) = 1; hence, λ1(Xi
′Ei) ≤ λi1 ≤ 1. By Corol-

lary 8.1-3 of [21],

λi(T )− 3ε ≤ λi(T̃ ) ≤ λi(T ) + 3ε . (A.1)

Let δ = λd(T )− λd+1(T )− ε. By Theorem 8.1-7 of [21], there is a d× (K − d)
matrix Q such that ‖Q‖2 ≤ 6ε

δ
and such that the columns of Û2 = (U2 +

U1Q)(I+Q′Q)−1/2 are an orthogonal basis for an invariant subspace of T̃ . We
want to show that Û2 and Ũ2 span the same subspaces. To prove this, we bound
the largest singular value of ‖Û ′2T̃ Û2‖2, and the result follows from (A.1).

First, note that

1− 6ε

δ
< λj

(
(I +Q′Q)−1/2

)
< 1 +

6ε

δ
. (A.2)

Hence,

∥∥∥Û ′2T̃ Û2

∥∥∥
2

=
∥∥∥(I +Q′Q)−1/2(U2 + U1Q)′T̃ (U2 + U1Q)(I +Q′Q)−1/2

∥∥∥
2

≤
(

1 +
6ελi1
δ

)2 (∥∥∥U ′2T̃U2

∥∥∥
2

+ 2
∥∥∥U ′2T̃U1Q

∥∥∥
2

+
∥∥∥Q′U ′1T̃U1Q

∥∥∥
2

)

≤
(

1 +
6ε

δ

)2
(

(λd+1(T ) + 3ε) +
(6ε)2

δ
+
(

6ε

δ

)2

(1 + 3ε)

)
.(A.3)

We now obtain some bounds on the size of ε. By the theorem assumption we

have ε <
(λi

d)4

72
. Since Assumption (A1) holds, we may assume that λd+1(T ) <

λd(T )
72

. Recall that δ = λd(T )− λd+1(T )− ε and that (λid)
2 = λd(T ). Isolating

ε we obtain that ε < λd(T )δ
60

. Similarly, we can show that ε < δ2

60
. We also

have that ε < λd(T )
72

, since by assumption λd(T ) < 1, and similarly, ε < δ
60

.
Summarizing, we have

ε < min

(
δ

60
,
λd(T )

72
,
λd(T )δ

60
,
δ2

60

)
. (A.4)

We are now ready to bound the expression in (A.3). We have that (1+ 6ε
δ

) < 11
10

since ε < δ
60

; λd+1(T ) < λd(T )
72

by assumption; 3ε < λd(T )
24

since ε < λd(T )
72

;
(6ε)2

δ
< λd(T )

120
since ε < δ

60
and also ε < λd(T )

72
; (6ε)2

δ2
< λd(T )

100
since ε < λd(T )δ

60
and

ε < δ
60

; 118 ε
3

δ2
< λd(T )

1000
since ε < δ

60
and ε < λd(T )

72
. Combining all these bounds,
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we obtain that ∥∥∥Û ′2T̃ Û2

∥∥∥
2
<
λd(T )

10
< λd(T )− 3ε .

Hence, by (A.1) we have that
∥∥∥Û ′2T̃ Û2

∥∥∥
2
< λd(T̃ ). Since Û2 spans a subspace

of K − d dimension, it must span the subspace with the K − d vectors with
lowest singular values of T̃ . In other words, Û2 spans the same subspace as Ũ2

or, equivalently, Û2Û
′
2 = Ũ2Ũ

′
2. Summarizing, we obtain that

w̃i =
Û2Û

′
21

1′Û2Û ′21
. (A.5)

We are now ready to bound the difference between wi and w̃i.

‖wi − w̃i‖2 =

∥∥∥∥∥ U2U2
′1

1′U2U2
′1
− Ũ2Û

′
21

1′Û2Û ′21

∥∥∥∥∥
2

=
1

1′U2U2
′1
− 2

1′U2U2
′Û2Û

′
21

1′U2U2
′11′Û2Û ′21

+
1

1′Û2Û ′21

=
1′(U2 − Û2)(U2 − Û2)′1

1′U2U2
′11′Û2Û ′21

We use Assumption 2 to obtain a bound on 1′U2U2
′1. Denote the projection

of the normalized vector 1√
K
1 on the basis {uj} by pj = 1√

K
1′ui. We have that

‖µi‖2 =
1

K

∥∥∥∥∥ 1√
K

1′U1L1

∥∥∥∥∥
2

=
1

K

d∑
j=1

(
pjλ

i
j

)2
.

By Assumption (A2), ‖µi‖2 < α
K

(λid)
2
. Hence

∑d
j=1 p

2
j < α. Since

∑K
j=1 p

2
j = 1,

we have that
K∑

j=d+1

p2
j =

1

K
1′U2U2

′1 > 1− α . (A.6)

Similarly, we obtain a bound on 1′Û2Û
′
21.

1′Û2Û
′
21≥

∥∥∥(I +Q′Q)−1/2U ′21
∥∥∥2
− 2

∣∣∣1′U1Q(I +Q′Q)−1U ′21
∣∣∣

≥ (1− 6ε

δ
)2K(1− α)− 2K

6ε

δ
(1 +

6ε

δ
)2(1− α)1/2

≥ 9K(1− α)

10
− 12K

ε

δ

(
11

10

)2

(1− α)1/2 ,
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where we used ε < δ
60

. Since by assumption ε <
λd(T )
√

(1−α)

72
, and using the

facts that λd+1(T ) < λd(T )
72

and ε < λd(T )
72

, we obtain that ε <
δ
√

(1−α)

60
. Hence,

1′Û2Û
′
21 ≥

K(1−α)
2

.

Finally, we obtain a bound on 1′(U2 − Û2)(U2 − Û2)′1.

∥∥∥U2 − Û2

∥∥∥
2

=
∥∥∥U2(I − (I +Q′Q)−1/2) + U1Q(I +Q′Q)−1/2

∥∥∥
2

≤‖U2‖2

∥∥∥I − (I +Q′Q)−1/2
∥∥∥

2
+ ‖U1‖2 ‖Q‖2

∥∥∥(I +Q′Q)−1/2
∥∥∥

2

≤ 6ε

δ
+

6ε

δ
(1 +

6ε

δ
) =

6ε

δ
(2 +

6ε

δ
) ,

where the last inequality follows from (A.2), the fact that for any eigenvector
v of (I+Q′Q)−1/2 with eigenvalue λv, v is also eigenvector of I−(I+Q′Q)−1/2

with eigenvalue 1 − λv, and the fact that ‖A‖2 = 1 for every matrix A with
orthonormal columns (see [21]). Consequently,

∥∥∥(U2 − Û2)′1
∥∥∥

2
≤ K

6ε

δ

(
2 +

6ε

δ

)
<

13Kε

δ
,

where we used ε < δ
60

.

Combining these results, we have that

‖wi − w̃i‖ <
(13Kε)/δ

(K(1− α))/
√

2
<

20ε

λd(T )(1− α)
,

where we used 21
20λd(T )

> 1
δ
.

A.3 Proof of Theorem 3

Since Φ(Z) =
∑N
i=1

∥∥∥∑j wij(zj − zi)
∥∥∥2

, we bound each summand separately in
order to obtain a global bound.

Let the induced neighbors of zi = f−1(xi) be defined by (τ1, . . . , τK) =
(f−1(η1), . . . , f−1(ηK)). Note that apriori, it is not clear that τj are neighbors
of zi. Let J be the Jacobian of the function f at zi. Since f is a conformal
mapping, J ′J = c(zi)I, for some positive c : Ω→ R. Using first-order approx-

imation we have that ηj − xi = J(τj − zi) +O
(
‖τj − zi‖2

)
. Hence, for wi we

have that

K∑
j=1

wij(τj − zi) =
K∑
j=1

wijJ
′(ηj − xi) +O

(
max
j
‖τj − zi‖2

)
.

22



Thus we have that

∥∥∥∥∥∥
K∑
j=1

wij(τj − zi)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
K∑
j=1

wijJ
′(ηj − xi)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
K∑
j=1

wijJ
′(ηj − xi)

∥∥∥∥∥∥O
(

max
j
‖τj − zi‖2

)
.

(A.7)

We bound
∥∥∥∑K

j=1wijJ
′(ηj − xi)

∥∥∥ for the vector wi that minimizes (5). Note

that by (4),
∑K
j=1wijJ

′(ηj − xi) = w′iX
P
i J + w′iU2L2V

′
2J . However, by con-

struction w′iX
P
i = 0. Hence

∥∥∥∥∥∥
K∑
j=1

wijJ
′(ηj − xi)

∥∥∥∥∥∥ = ‖w′iU2L2V
′

2J‖ ≤ ‖wi‖ ‖U2L2V2
′J‖2 ≤

‖wi‖λid+1√
c(zi)

,

where we used the facts that ‖Ax‖2 ≤ ‖A‖2‖x‖2 for a any matrix A, and that
‖A‖2 = 1 for a matrix A with orthonormal columns (for both claim, see [21],
Section 2). Substituting in (A.7), we obtain that

∥∥∥∥∥∥
K∑
j=1

wij(τj − zi)

∥∥∥∥∥∥
2

≤
‖wi‖2 (λid+1)2

c(zi)
+ ‖wi‖λid+1O

(
max
j
‖τj − zi‖2

)
.

Since Assumption (A2) holds, it follows from (A.6) that ‖wi‖2 = 1
1′U2U2

′1
<

1
K(1−α)

.

As f is a conformal mapping, we have that cmin ‖τj − zi‖ ≤ dM(ηj, xi), where
dM is the geodesic metric and cmin > 0 is the minimum of the scale function
c(z) that measures the scaling change of f at z. The minimum cmin is attained
as Ω is compact. The last inequality holds true since the geodesic distance
dM(ηj, xi) is equal to the integral over c(z) for some path between τj and zi.

The sample is assumed to be dense; hence ‖τj − xi‖ < s0, where s0 is the min-
imum branch separation (see Section 5). Using Lemma 3 of [24], we conclude
that

‖τj − zi‖ ≤
1

cmin

dM(ηj, xi) <
π

2cmin

‖ηj − xi‖ .

Since Assumption (A1) holds, and

r(i)2 = max
j
‖ηj − xi‖2 ≥ 1

K

K∑
j=1

‖ηj − xi‖2 = ‖Xi‖2
F =

1

K

K∑
j=1

(λij)
2 ≥ d

K
(λid)

2 ,

we have that λd+1 � r(i). Hence
∥∥∥∑K

j=1wij(τj − zi)
∥∥∥2

= λid+1O (r(i)2).

23



References

[1] S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (5500) (2000) 2323–2326.

[2] J. B. Tenenbaum, V. de Silva, J. C. Langford, A global geometric framework
for nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323.

[3] M. Belkin, P. Niyogi, Laplacian Eigenmaps for dimensionality reduction and
data representation, Neural Comp. 15 (6) (2003) 1373–1396.

[4] D. L. Donoho, C. Grimes, Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data, Proc. Natl. Acad. Sci. U.S.A. 100 (10)
(2004) 5591–5596.

[5] Z. Y. Zhang, H. Y. Zha, Principal manifolds and nonlinear dimensionality
reduction via tangent space alignment, SIAM J. Sci. Comp 26 (1) (2004) 313–
338.

[6] K. Q. Weinberger, L. K. Saul, Unsupervised learning of image manifolds by
semidefinite programming, International Journal of Computer Vision 70(1)
(2006) 77–90.

[7] W. Xu, X. Lifang, Y. Dan, H. Zhiyan, Speech visualization based on locally
linear embedding (lle) for the hearing impaired, in: BMEI (2), 2008, pp. 502–
505.

[8] R. Shi, I.-F. Shen, W. Chen, Image denoising through locally linear embedding,
in: CGIV ’05: Proceedings of the International Conference on Computer
Graphics, Imaging and Visualization, IEEE Computer Society, 2005, pp. 147–
152.

[9] J. Chen, R. Wang, S. Yan, S. Shan, X. Chen, W. Gao, Enhancing human face
detection by resampling examples through manifolds, IEEE Transactions on
Systems, Man and Cybernetics, Part A. 37 (6) (2007) 1017–1028.

[10] P. L’Heureux, J. Carreau, Y. Bengio, O. Delalleau, S. Yue, Locally linear
embedding for dimensionality reduction in qsar, J. Comput. Aided Mol. Des.
18 (2004) 475–482.

[11] M. Wang, H. Yang, Z. Xu, K. Chou, SLLE for predicting membrane protein
types, J. Theor. Biol. 232 (1) (2005) 7–15.

[12] X. Xu, F. Wu, Z. Hu, A. Luo, A novel method for the determination of redshifts
of normal galaxies by non-linear dimensionality reduction, Spectroscopy and
Spectral Analysis 26 (1) (2006) 182–186.

[13] Y. Goldberg, Y. Ritov, Ldr-lle: Lle with low-dimensional neighborhood
representation, to appear in the proceedings of the 4th International Symposium
on Visual Computing (ISVC08) (2008).

24
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