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Abstract. The local linear embedding algorithm (LLE) is a non-linear
dimension-reducing technique, widely used due to its computational sim-
plicity and intuitive approach. LLE first linearly reconstructs each in-
put point from its nearest neighbors and then preserves these neigh-
borhood relations in the low-dimensional embedding. We show that the
reconstruction weights computed by LLE capture the high-dimensional
structure of the neighborhoods, and not the low -dimensional manifold
structure. Consequently, the weight vectors are highly sensitive to noise.
Moreover, this causes LLE to converge to a linear projection of the in-
put, as opposed to its non-linear embedding goal. To overcome both
of these problems, we propose to compute the weight vectors using a
low-dimensional neighborhood representation. We present numerical ex-
amples demonstrating both the perturbation and linear projection prob-
lems, and the improved outputs using the low-dimensional neighborhood
representation.

1 Introduction

The local linear embedding algorithm (LLE) [1] belongs to a class of recently
developed, non-linear dimension-reducing algorithms that include Isomap [2],
Laplacian Eigenmap [3], Hessian Eigenmap [4], LTSA [5], and MVU [6]. This
group of algorithms assumes that the data is sitting on, or next to, an embedded
manifold of low dimension within the original high-dimensional space, and at-
tempts to find an embedding that maps the input points to the lower-dimensional
space. Here a manifold is defined as a topological space that is locally equivalent
to an Euclidean space. LLE was found to be useful in data visualization [1, 7],
and image processing applications, such as image denoising [8] and human face
detection [9]. It is also applied in different fields of science such as chemistry [10],
biology [11], and astrophysics [12].

LLE attempts to recover the domain structure of the input data set in three
steps. First, LLE assigns neighbors to each input point. Second, for each input
point LLE computes weight vectors that best linearly reconstruct the input point
from its neighbors. Finally, LLE finds a set of low-dimensional output points that
minimize the sum of reconstruction errors, under some normalization constraints.

In this paper we focus on the computation of the weight vectors in the sec-
ond step of LLE. We show that LLE’s neighborhood description captures the
structure of the high-dimensional space, and not that of the low -dimensional
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domain. We show two main consequences of this observation. First, the weight
vectors are highly sensitive to noise. This implies that a small perturbation of
the input may yield an entirely different embedding. Second, we show that LLE
converges to a linear projection of the high-dimensional input when the number
of input points tends to infinity. Numerical results that demonstrate our claims
are provided.

To overcome these problems, we suggest a simple modification to the second
step of LLE, LLE with low-dimensional neighborhood representation. Our ap-
proach is based on finding the best low-dimensional representation for the neigh-
borhood of each point, and then computing the weights with respect to these low-
dimensional neighborhoods. This proposed modification preserves LLE’s princi-
ple of reconstructing each point from its neighbors. It is of the same computa-
tional complexity as LLE and it removes the need to use regularization when
the number of neighbors is greater than the input dimension.

We proved that the weights computed by LLE with low-dimensional neigh-
borhood representation are robust against noise. We also proved that when us-
ing the modified LLE on input points sampled from an isometrically embedded
manifold, the pre-image of the input points achieves a low value of the objec-
tive function. The theorems and proofs are omitted, due to lack of space, and
will presented elsewhere. We demonstrate an improvement in the output of LLE
when using the low-dimensional neighborhood representation for several numer-
ical examples.

There are other works that suggest improvements for LLE. The Efficient
LLE [13] and the Robust LLE [14] algorithms both address the problem of out-
liers by preprocessing the input data. Other versions of LLE, including ISOLLE [15]
and Improved LLE [16], suggest different ways to compute the neighbors of each
input point in the first step of LLE. The Modified LLE algorithm [17] proposes
to improve LLE by using multiple local weight vectors in LLE’s second step,
thus characterizing the high-dimensional neighborhood more accurately. All of
these algorithms attempt to characterize the high-dimensional neighborhoods,
and not the low -dimensional neighborhood structure.

Other algorithms can be considered variants of LLE. Laplacian Eigenmap
essentially computes the weight vectors using regularization with a large regu-
larization constant (see discussion on the relation between LLE and Laplacian
Eigenmap in [3], Section 5). Hessian Eigenmap [4] characterizes the local input
neighborhoods using the null space of the local Hessian operator, and minimizes
the appropriate function for the embedding. Closely related is the LTSA al-
gorithm [5], which characterizes each local neighborhood using its local PCA.
These last two algorithms attempt to describe the low-dimensional neighbor-
hood. However, these algorithms, like Laplacian Eigenmap, do not use LLE’s
intuitive approach of reconstructing each point from its neighbors. Our pro-
posed modification provides a low-dimensional neighborhood description while
preserving LLE’s intuitive approach.

The paper is organized as follows. The description of LLE is presented in
Section 2. The discussion of the second step of LLE appears in Section 3. The
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suggested modification of LLE is presented in Section 4. In Section 5 we present
numerical examples.

2 Description of LLE

The input data X = {x1, . . . , xN}, xi ∈ RD for LLE is assumed to be sitting
on or next to a d-dimensional manifold M. We refer to X as an N ×D matrix,
where each row stands for an input point. The goal of LLE is to recover the
underlying d-dimensional structure of the input data X. LLE attempts to do so
in three steps.

First, LLE assigns neighbors to each input point xi. This can be done, for
example, by choosing the input point’s K-nearest neighbors based on the Eu-
clidian distances in the high-dimensional space. Denote by {ηj} the neighbors of
xi. Let the neighborhood matrix of xi be denoted by Xi, where Xi is the K×D
matrix with rows ηj − xi.

Second, LLE computes weights wij that best linearly reconstruct xi from its
neighbors. These weights minimize the reconstruction error function

εi(wi) = ‖xi −
∑
j

wijxj‖2 , (1)

where wij = 0 if xj is not a neighbor of xi, and
∑
j wij = 1. With some abuse of

notation, we will also refer to wi as a K×1 vector, where we omit the entries of wi
for non-neighbor points. Using this notation, we may write εi(wi) = w′iXiX

′
iwi.

Finally, given the weights found above, LLE finds a set of low-dimensional
output points Y = {y1, . . . , yN} ∈ Rd that minimize the sum of reconstruction
errors

Φ(Y ) =
n∑
i=1

‖yi −
∑
j

wijyj‖2 , (2)

under the normalization constraints Y ′1 = 0 and Y ′Y = I, where 1 is vector of
ones. These constraints force a unique minimum of the function Φ.

The function Φ(Y ) can be minimized by finding the d-bottom non-zero eigen-
vectors of the sparse matrix (I−W )′(I−W ), where W is the matrix of weights.
Note that the p-th coordinate (p = 1, . . . , d), found simultaneously for all output
points yi, is equal to the eigenvector with the p-smallest non-zero eigenvalue.
This means that the first p coordinates of the LLE solution in q dimensions,
p < q, are exactly the LLE solution in p dimensions [1, 18]. Equivalently, if
an LLE output of dimension q exists, then a solution for dimension p, p < q, is
merely a linear projection of the q-dimensional solution on the first p dimensions.

When the number of neighbors K is greater than the dimension of the in-
put D, each data point can be reconstructed perfectly from its neighbors, and
the local reconstruction weights are no longer uniquely defined. In this case,
regularization is needed and one needs to minimize

εregi (wi) = ‖xi −
∑
j

wijxj‖2 + δ‖wi‖2 . (3)
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Fig. 1. The input for LLE is the 16-point open ring that appears in (A). The two-
dimensional output of LLE is given in (B). LLE finds and preserves the two-dimensional
structure of each of the local neighborhoods. The one-dimensional output of LLE ap-
pears in (C). The computation was performed using 4-nearest-neighbors, and regular-
ization constant ∆ = 10−9.

where δ is a small constant. Saul and Roweis [18] suggested δ = ∆
K trace(XiX

′
i)

with ∆� 1. Regularization can be problematic for the following reasons. When
the regularization constant is not small enough, it was shown by Zhang and
Wang [17] that the correct weight vectors cannot be well approximated by the
minimizer of εregi (wi). Moreover, when the regularization constant is relatively
high, it produces weight vectors that tend towards the uniform vectors wi =
(1/K, . . . , 1/K). Consequently, the solution for LLE with large regularization
constant is close to that of Laplacian Eigenmap, and does not reflect a solution
based on reconstruction weight vectors (see [3], Section 5). However, in real-
world data the dimension of the input is typically greater than the number of
neighbors. Hence regularization is usually unnecessary.

3 Preservation of high-dimensional neighborhood
structure by LLE

In this section we focus on the computation of the weight vectors, which is
performed in the second step of LLE. We first show that LLE characterizes
the high-dimensional structure of the neighborhood. We explain how this can
lead to the failure of LLE in finding a meaningful embedding of the input. Two
additional consequences of preservation of the high-dimensional neighborhood
structure are discussed. First, LLE’s weight vectors are sensitive to noise. Second,
LLE’s output tends toward a linear projection of the input data when the number
of input points tends to infinity. These claims are demonstrated using numerical
examples.

We begin by showing that LLE preserves the high-dimensional neighborhood
structure. We use the example that appears in Fig 1. The input is a sample from
an open ring which is a one-dimensional manifold embedded in R2. For each
point on the ring, we define its neighborhood using its 4 nearest neighbors. Note
that its high-dimensional (D = 2) neighborhood structure is curved, while the
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Fig. 2. (A) LLE’s input, a 2000-point ‘S’ curve. (B) The three-dimensional output of
LLE. It can be seen that LLE finds the overall three-dimensional structure of the input.
(C) The two-dimensional output of LLE.

low -dimensional structure (d = 1) is a straight line. The two-dimensional output
of LLE (see Fig. 1) is essentially a reconstruction of the input. In other words,
LLE’s weight vectors preserve the curved shape of each neighborhood.

The one-dimensional output of the open ring is presented in Fig 1C. Recall
that the one-dimensional solution is a linear projection of the two-dimensional
solution, as explained in section 2. In the open-ring example, LLE clearly fails
to find an appropriate one-dimensional embedding, because it preserves the two-
dimensional curved neighborhood structure. We now show that this is also true
for additional examples.

The ‘S’ curve input data appears in Fig 2A. Fig 2B shows that the overall
three-dimensional structure of the ‘S’ curve is preserved in the three-dimensional
embedding. The two-dimensional output of LLE appears in Fig 2C. It can be
seen that LLE does not succeed in finding a meaningful embedding in this case.
Fig 3 presents the swissroll, with similar results.

We performed LLE, here and in all other examples, using the LLE Matlab
code as it appears on the LLE website [19]. 1 The code that produced the input
data for the ‘S’ curve and the swissroll was also taken from the LLE website. We
used the default values of 2000-point samples and 12-nearest-neighbors. For the
regularization constant we used ∆ = 10−9. It should be noted that using a large
regularization constant improved the results. However, as discussed in Section 2,
the weight vectors produced in this way do not reflect a solution that is based
on reconstruction weight vectors. Instead the vectors tend toward the uniform
vector.

We now discuss the sensitivity of LLE’s weight vectors {wi} to noise. Figure 4
shows that an arbitrarily small change in the neighborhood can cause a large
change in the weight vectors. This result can be understood by noting how
the vector wi is obtained. It can be shown [18] that wi equals (XiX

′
i)
−11, up

to normalization. Sensitivity to noise is therefore expected when the condition
number of XiX

′
i is large (see [20], Section 2). One way to solve this problem

1 The changes in the Matlab function eigs were taken into account
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Fig. 3. (A) LLE’s input, a 2000-point swissroll. (B) The three-dimensional output of
LLE. It can be seen that LLE finds the overall three-dimensional structure of the input.
(C) The two-dimensional output of LLE.

Fig. 4. The effect of a small perturbation on the weight vector computed by LLE. All
three panels show the same unperturbed neighborhood, consisting of a point and its four
nearest-neighbors (black points), all sitting in the two-dimensional plane. Each panel
shows a different small perturbation of the original neighborhood (gray points). All
perturbations are in the direction orthogonal to the plane of the original neighborhood.
(A) and (C): Both perturbations are in the same direction. (B) Perturbations are of
equal size, in opposite directions. The unique weight vector for the center point is
denoted for each case. These three different weight vectors vary widely, even though
the different perturbations can be arbitrarily small.

is to enforce regularization, with its associated problems (see section 2). In the
next section we suggest a simple alternative solution to the sensitivity of LLE
to noise.

One more implication of the fact that LLE preserves the high-dimensional
neighborhood structure is that LLE’s output tends to a linear projection of
the input data. Wu and Hu [21] proved for a finite data set that when the
reconstruction errors are exactly zero for each of the neighborhoods, and under
some dimensionality constraint, the output of LLE must be a linear projection
of the input data. Here, we present a simple argument that explains why LLE’s
output tends to a linear projection when the number of input points tends to
infinity, and show numerical examples that strengthen this claim. For simplicity,
we assume that the input data is normalized.
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Our argument is based on two claims. First, note that LLE’s output for
dimension d is a linear-projection of LLE’s output for dimension D (see Sec-
tion 2). Second, note that by definition, the LLE output is a set of points Y
that minimizes the sum of reconstruction errors Φ(Y ). For normalized input X
of dimension D, when the number of input points tends to infinity, each point is
well reconstructed by its neighboring points. Therefore the reconstruction error
εi(w) tends to zero for each point xi. This means that the input data X tends
to minimize the sum of reconstruction errors Φ(Y ). Hence, the output points
Y of LLE for output of dimension D tend to the input points (up to a rota-
tion). The result of these two claims is that any requested solution of dimension
d < D tends to a linear projection of the D-dimensional solution, i.e., a linear
projection of the input data.

The result that LLE tends to a linear projection is of asymptotical nature.
However, numerical examples show that this phenomenon can occur even when
the number of points is relatively small. This is indeed the case for the outputs
of LLE shown in Figs. 1C, 2C, and 3C, for the open ring, the ‘S’ curve, and the
swissroll, respectively.

4 Low-dimensional neighborhood representation for LLE

In this section we suggest a simple modification of LLE that computes the low-
dimensional structure of the input points’ neighborhoods. Our approach is based
on finding the best representation of rank d (in the l2 sense) for the neigh-
borhood of each point, and then computing the weights with respect to these
d-dimensional neighborhoods. In Section 5 we show numerical examples that
justify our suggested modification.

We begin by finding a rank-d representation for each local neighborhood.
Recall that Xi is the K×D neighborhood matrix of xi, whose j-th row is ηj−xi,
where ηj is the j-th neighbor of xi. We assume that the number of neighbors
K is greater than d, since otherwise xi cannot (in general) be reconstructed by
its neighbors. We say that XP

i is the best rank-d representation of Xi, if XP
i

minimizes
∥∥Xi−Y

∥∥
2

over all the K×D matrices Y of rank d. Let ULV ′ be the
SVD of Xi, where U and V are orthogonal matrices of size K ×K and D ×D,
respectively, and L is a K ×D matrix, where Ljj = λj are the singular values
of Xi for j = min(K,D), ordered from the largest to the lowest, and Lij = 0 for
i 6= j. We denote

U =
(
U1, U2

)
; L =

(
L1, 0
0, L2

)
; V =

(
V1, V2

)
(4)

where U1 = (u1, . . . , ud) and V1 = (v1, . . . , vd) are the first d columns of U and
V , respectively, U2 and V2 are the last K − d and D − d columns of U and
V respectively, and L1 and L2 are of dimension d × d and (K − d) × (D − d),
respectively. Then by Corollary 2.3-3 of [20], XP

i can be written as U1L1V
′
1 .

We now compute the weight vectors for the d-dimensional neighborhood XP
i .

By (1), we need to find wi that minimize w′iX
P
i X

P
i
′
wi (see Section 2). The
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solution for this minimization problem is not unique, since by the construction
all the vectors spanned by ud+1, . . . , uK zero this function. Thus, our candidate
for the weight vector is the vector in the span of ud+1, . . . , uK that has the
smallest l2 norm. In other words, we are looking for

argmin
wi∈span{ud+1,...,uK}

wi
′1=1

‖wi‖2 . (5)

Note that we implicitly assume that 1 /∈ span{u1, . . . , ud}. This is true when-
ever the neighborhood points are in general position, i.e., no d+1 of them lie in a
(d− 1)-dimensional plane. To understand this, note that if 1 ∈ span{u1, . . . , ud}
then (I− 1

K11′)XP
i = (I− 1

K11′)U1L1V
′
1 is of rank d−1. Since (I− 1

K11′)Xi is
the projected neighborhood after centering, we obtained that the dimension of
the centered projected neighborhood is of dimension d−1, and not d as assumed,
and therefore the points are not in general position.

The following Lemma shows how to compute the vector wi that minimizes (5).

Lemma 1. Assume that the points of XP
i are in general position. Then the

vector wi that minimizes (5) is given by

wi =
U2U2

′1

1′U2U2
′1
. (6)

The proof is based on Lagrange multipliers.
Following Lemma 1, we propose a simple modification for LLE based on

computing the reconstruction vectors using a d-dimensional neighborhood rep-
resentation.

Algorithm:
LLE with low-dimensional neighborhood representation

Input: X, an N ×D matrix.
Output: Y , an N × d matrix.

Procedure:

1. For each point xi find K-nearest-neighbors and compute the neighbor-
hood matrix Xi.

2. For each point xi compute the weight vector wi using the d-dimensional
neighborhood representation:
– Use the SVD decomposition to write Xi = ULV ′.
– Write U2 = (ud+1 . . . , uK).
– Compute

wi =
U2U2

′1
1′U2U2

′1
.

3. Compute the d-dimension embedding by minimizing Φ(Y ) (see (2)).
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Fig. 5. The effect of neighborhood perturbation on the weight vectors of LLE and
of LLE with low-dimensional neighborhood representation. The original neighborhood
consists of a point on the two-dimensional grid and its 4-nearest neighbors, as in Fig 4.
A 4-dimensional noise matrix εE where ‖E‖F = 1 was added to the neighborhood
for ε = 10−2, 10−4 and 10−6, with 1000 repetitions for each value of ε. Note that no
regularization is needed since K = D. The graphs show the distance between the vector
w =

(
1
4
, 1

4
, 1

4
, 1

4

)
and the vectors computed by LLE (upper, in green) and by LLE with

low-dimensional neighborhood representation (lower, in blue). Note the log scale in the
y axis.

Note that the difference between this algorithm and LLE is in step (2). We
compute the low-dimensional neighborhood representation of each neighborhood
and obtain its weight vector, while LLE computes the weight vector for the
original high-dimensional neighborhoods. One consequence of this approach is
that the weight vectors wi are less sensitive to perturbation (see Fig 5). Proof
of this result is omitted due to lack of space. Another consequence is that the
d-dimensional output is no longer a projection of the embedding in dimension
q, q > d. This is because the weight vectors wi are computed differently for
different values of output dimension d. In particular, the input data no longer
minimize Φ, and therefore the linear projection problem does not occur.

From a computational point of view, the cost of this modification is small.
For each point xi, the cost of computing the SVD of the matrix Xi is O(DK3).
For N neighborhoods we have O(NDK3) which is of the same scale as LLE for
this step. Since the overall computation of LLE is O(N2D), the overhead of the
modification has little influence on the running time of the algorithm (see [18],
Section 4).

5 Numerical results

In this section we present empirical results for LLE and LLE with low-dimensional
neighborhood representation on some data sets. For LLE, we used the Matlab
code as appears in LLE website [19]. The code for LLE with low-dimensional
neighborhood representation is based on the LLE code and differs only in step
(2) of the algorithm.
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Fig. 6. The output of LLE with low-dimensional neighborhood representation for the
open ring, the ‘S’ curve, and the swissroll, appear in (A),(B), and (C), respectively.
Compare to the results of LLE, presented in Figs. 1C, 2C and 3C.

.

Fig. 7. The first two dimensions out of the three-dimensional output of LLE for the
faces database appear in all three panels. (A) is colored according to the right-left
pose, (B) is colored according to the up-down pose, and (C) is colored according to the
lighting direction.

We ran LLE with low-dimensional neighborhood representation on the data
sets of the open ring, the ‘S’-curve, and the swissroll that appear in Figs 1-
3. We used the same parameters for both LLE and LLE with low-dimensional
neighborhood representation (K = 4 for the open ring and K = 12 for the
‘S’-curve and the swissroll). The results appear in Fig 6.

We ran both LLE and LLE with low-dimensional neighborhood representa-
tion on 64 by 64 pixel images of a face, rendered with different poses and lighting
directions. The 698 images and their respective poses and lighting directions can
be found at the Isomap webpage [22]. The results of LLE, with K = 12, are
given in Fig. 7. We also checked for K = 8, 16; in all cases LLE does not succeed
in retrieving the pose and lighting directions. The results for LLE with low-
dimensional neighborhood representation, also with K = 12, appear in Fig 8.
The left-right pose and the lighting directions were discovered by LLE with low-
dimensional neighborhood representation. We also checked for K = 8, 16; the
results are roughly the same.
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Fig. 8. The output of LLE with low-dimensional neighborhood representation is colored
according to the left-right pose. LLE with low-dimensional neighborhood representation
also succeeds in finding the lighting direction. The up-down pose is not fully recovered.
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