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Supplementary Proofs

S1 Proof of Lemma 3.1

Write wi =
∑K

m=d+1 amum = U2a. The Lagrangian of the problem can be
written as

L(a, λ) =
1

2
a′U2

′U2a+ λ(1′U2a− 1) .

Taking derivatives with respect to both a and λ, we obtain

∂L

∂a
= U2

′U2a− λU2
′1 = a− λU2

′1 ,

∂L

∂λ
= 1′U2a− 1 .

Hence we obtain that a = U2
′1

1′U2U2
′1

.

S2 Proof of Theorem 5.1

The proof of Theorem 5.1 consists of two steps. First, we find a representation
of the vector w̃i, the weight vector of the perturbed neighborhood; see (14).
Then we bound the distance between w̃i and wi, the weight vector of the
original neighborhood.
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We start with some notations. For every matrix A, let λj(A) be the j-th
singular value of A. Note that ‖A‖2 = λ1(A). In this notation, we have λij =

λj(Xi). Denote by T = Xi
′Xi and T̃ = X̃ ′iX̃i = T+ε(Xi

′Ei+Ei
′Xi)+ε2Ei

′Ei.

Using the decomposition of (4), we may write T = UL2U ′ and T̃ = Ũ L̃2Ũ ′.

Note that λj(T ) = λj(Xi)
2. Define U2 and Ũ2 to be the K×(K−d) matrices

of the left-singular vectors corresponding to the lowest singular values, as
in (4).

Note that by assumption, λ1(Ei) = 1; hence, λ1(Xi
′Ei) ≤ λi1 ≤ 1. By

Corollary 8.1-3 of Golub and Loan (1983),

λi(T )− 3ε ≤ λi(T̃ ) ≤ λi(T ) + 3ε . (10)

Let δ = λd(T )− λd+1(T )− ε. By Theorem 8.1-7 of Golub and Loan (1983),
there is a d × (K − d) matrix Q such that ‖Q‖2 ≤ 6ε

δ
and such that the

columns of Û2 = (U2 + U1Q)(I + Q′Q)−1/2 are an orthogonal basis for an

invariant subspace of T̃ . We want to show that Û2 and Ũ2 span the same
subspaces. To prove this, we bound the largest singular value of ‖Û ′2T̃ Û2‖2,
and the result follows from (10).

First, note that

1− 6ε

δ
< λj

(
(I +Q′Q)−1/2

)
< 1 +

6ε

δ
. (11)

Hence,∥∥∥Û ′2T̃ Û2

∥∥∥
2

=
∥∥∥(I +Q′Q)−1/2(U2 + U1Q)′T̃ (U2 + U1Q)(I +Q′Q)−1/2

∥∥∥
2

≤
(

1 +
6ελi1
δ

)2 (∥∥∥U ′2T̃U2

∥∥∥
2

+ 2
∥∥∥U ′2T̃U1Q

∥∥∥
2

+
∥∥∥Q′U ′1T̃U1Q

∥∥∥
2

)
≤

(
1 +

6ε

δ

)2
(

(λd+1(T ) + 3ε) +
(6ε)2

δ
+

(
6ε

δ

)2

(1 + 3ε)

)
.(12)

We now obtain some bounds on the size of ε. By the theorem assump-

tion we have ε <
(λi

d)4

72
. Since Assumption (A1) holds, we may assume that

λd+1(T ) < λd(T )
72

. Recall that δ = λd(T )−λd+1(T )−ε and that (λid)
2 = λd(T ).

Isolating ε we obtain that ε < λd(T )δ
60

. Similarly, we can show that ε < δ2

60
.

We also have that ε < λd(T )
72

, since by assumption λd(T ) < 1, and similarly,
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ε < δ
60

. Summarizing, we have

ε < min

(
δ

60
,
λd(T )

72
,
λd(T )δ

60
,
δ2

60

)
. (13)

We are now ready to bound the expression in (12). We have that (1+ 6ε
δ

) <
11
10

since ε < δ
60

; λd+1(T ) < λd(T )
72

by assumption; 3ε < λd(T )
24

since ε < λd(T )
72

;
(6ε)2

δ
< λd(T )

120
since ε < δ

60
and also ε < λd(T )

72
; (6ε)2

δ2
< λd(T )

100
since ε < λd(T )δ

60

and ε < δ
60

; 118 ε
3

δ2
< λd(T )

1000
since ε < δ

60
and ε < λd(T )

72
. Combining all these

bounds, we obtain that∥∥∥Û ′2T̃ Û2

∥∥∥
2
<
λd(T )

10
< λd(T )− 3ε .

Hence, by (10) we have that
∥∥∥Û ′2T̃ Û2

∥∥∥
2
< λd(T̃ ). Since Û2 spans a subspace

of K − d dimension, it must span the subspace with the K − d vectors with
lowest singular values of T̃ . In other words, Û2 spans the same subspace as
Ũ2 or, equivalently, Û2Û

′
2 = Ũ2Ũ

′
2. Summarizing, we obtain that

w̃i =
Û2Û

′
21

1′Û2Û ′21
. (14)

We are now ready to bound the difference between wi and w̃i.

‖wi − w̃i‖2 =

∥∥∥∥∥ U2U2
′1

1′U2U2
′1
− Ũ2Û

′
21

1′Û2Û ′21

∥∥∥∥∥
2

=
1

1′U2U2
′1
− 2

1′U2U2
′Û2Û

′
21

1′U2U2
′11′Û2Û ′21

+
1

1′Û2Û ′21

=
1′(U2 − Û2)(U2 − Û2)′1

1′U2U2
′11′Û2Û ′21

We use Assumption (A2) to obtain a bound on 1′U2U2
′1. Denote the

projection of the normalized vector 1√
K

1 on the basis {uj} by pj = 1√
K

1′ui.
We have that

‖µi‖2 =
1

K

∥∥∥∥ 1√
K

1′U1L1

∥∥∥∥2

=
1

K

d∑
j=1

(
pjλ

i
j

)2
.
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By Assumption (A2), ‖µi‖2 < α
K

(λid)
2
. Hence

∑d
j=1 p

2
j < α. Since

∑K
j=1 p

2
j =

1, we have that
K∑

j=d+1

p2
j =

1

K
1′U2U2

′1 > 1− α . (15)

Similarly, we obtain a bound on 1′Û2Û
′
21.

1′Û2Û
′
21 ≥

∥∥(I +Q′Q)−1/2U ′21
∥∥2 − 2

∣∣1′U1Q(I +Q′Q)−1U ′21
∣∣

≥ (1− 6ε

δ
)2K(1− α)− 2K

6ε

δ
(1 +

6ε

δ
)2(1− α)1/2

≥ 9K(1− α)

10
− 12K

ε

δ

(
11

10

)2

(1− α)1/2 ,

where we used ε < δ
60

. Since by assumption ε <
λd(T )
√

(1−α)

72
, and using the

facts that λd+1(T ) < λd(T )
72

and ε < λd(T )
72

, we obtain that ε <
δ
√

(1−α)

60
. Hence,

1′Û2Û
′
21 ≥

K(1−α)
2

.

Finally, we obtain a bound on 1′(U2 − Û2)(U2 − Û2)′1.∥∥∥U2 − Û2

∥∥∥
2

=
∥∥U2(I − (I +Q′Q)−1/2) + U1Q(I +Q′Q)−1/2

∥∥
2

≤ ‖U2‖2

∥∥I − (I +Q′Q)−1/2
∥∥

2
+ ‖U1‖2 ‖Q‖2

∥∥(I +Q′Q)−1/2
∥∥

2

≤ 6ε

δ
+

6ε

δ
(1 +

6ε

δ
) =

6ε

δ
(2 +

6ε

δ
) ,

where the last inequality follows from (11), the fact that for any eigenvector v
of (I+Q′Q)−1/2 with eigenvalue λv, v is also eigenvector of I− (I+Q′Q)−1/2

with eigenvalue 1− λv, and the fact that ‖A‖2 = 1 for every matrix A with
orthonormal columns (see Golub and Loan, 1983). Consequently,∥∥∥(U2 − Û2)′1

∥∥∥
2
≤ K

6ε

δ

(
2 +

6ε

δ

)
<

13Kε

δ
,

where we used ε < δ
60

.
Combining these results, we have that

‖wi − w̃i‖ <
(13Kε)/δ

(K(1− α))/
√

2
<

20ε

λd(T )(1− α)
,

where we used 21
20λd(T )

> 1
δ
.
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S3 Proof of Theorem 5.2

Since Φ(Z) =
∑n

i=1

∥∥∥∑j wij(zj − zi)
∥∥∥2

, we bound each summand separately

in order to obtain a global bound.
Let the induced neighbors of zi = f−1(xi) be defined by (τ1, . . . , τK) =

(f−1(η1), . . . , f−1(ηK)). Note that apriori, it is not clear that τj are neighbors
of zi. Let J be the Jacobian of the function f at zi. Since f is a conformal
mapping, J ′J = c(zi)I, for some positive c : Ω → R. Using first-order
approximation we have that ηj −xi = J(τj − zi) +O

(
‖τj − zi‖2). Hence, for

wi we have that

K∑
j=1

wij(τj − zi) =
K∑
j=1

wijJ
′(ηj − xi) +O

(
max
j
‖τj − zi‖2

)
. (16)

Thus we have that∥∥∥∥∥
K∑
j=1

wij(τj − zi)

∥∥∥∥∥
2

=

∥∥∥∥∥
K∑
j=1

wijJ
′(ηj − xi)

∥∥∥∥∥
2

+

∥∥∥∥∥
K∑
j=1

wijJ
′(ηj − xi)

∥∥∥∥∥O
(

max
j
‖τj − zi‖2

)
.

(17)

We bound
∥∥∥∑K

j=1wijJ
′(ηj − xi)

∥∥∥ for the vector wi that minimizes (5).

Note that by (4),
∑K

j=1wijJ
′(ηj − xi) = w′iX

P
i J + w′iU2L2V

′
2J . However, by

construction w′iX
P
i = 0. Hence∥∥∥∥∥

K∑
j=1

wijJ
′(ηj − xi)

∥∥∥∥∥ = ‖w′iU2L2V
′

2J‖ ≤ ‖wi‖ ‖U2L2V2
′J‖2 ≤

‖wi‖λid+1√
c(zi)

,

where we used the facts that ‖Ax‖2 ≤ ‖A‖2‖x‖2 for a any matrix A, and
that ‖A‖2 = 1 for a matrix A with orthonormal columns (for both claims,
see Golub and Loan, 1983, Section 2). Substituting in (17), we obtain that∥∥∥∥∥

K∑
j=1

wij(τj − zi)

∥∥∥∥∥
2

≤
‖wi‖2 (λid+1)2

c(zi)
+ ‖wi‖λid+1O

(
max
j
‖τj − zi‖2

)
.

Since Assumption (A2) holds, it follows from (15) that ‖wi‖2 = 1
1′U2U2

′1
<

1
K(1−α)

.

As f is a conformal mapping, we have that cmin ‖τj − zi‖ ≤ dM(ηj, xi),
where dM is the geodesic metric and cmin > 0 is the minimum of the scale
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function c(z) that measures the scaling change of f at z. The minimum cmin

is attained as Ω is compact. The last inequality holds true since the geodesic
distance dM(ηj, xi) is equal to the integral over c(z) for some path between
τj and zi.

The sample is assumed to be dense; hence ‖τj − xi‖ < s0, where s0 is the
minimum branch separation (see Section 5). Using Lemma 3 of Bernstein
et al. (2000), we conclude that

‖τj − zi‖ ≤
1

cmin

dM(ηj, xi) <
π

2cmin

‖ηj − xi‖ . (18)

Since Assumption (A1) holds, and

r(i)2 = max
j
‖ηj−xi‖2 ≥ 1

K

K∑
j=1

‖ηj−xi‖2 = ‖Xi‖2
F =

1

K

K∑
j=1

(λij)
2 ≥ d

K
(λid)

2 ,

we have that λd+1 � r(i). Hence
∥∥∥∑K

j=1wij(τj − zi)
∥∥∥2

= λid+1O (r(i)2).

S4 Proof of Theorem 5.3

Before we start the proof, we need some additional notation. We say that
an = Op(cn) if an = op(cnn

α) for any α > 0 (and typically, but not necessarily,
cn = op(an)). We say that an = Ωp(cn) if both an = Op(cn) and cn = Op(an).
That is, if an and cn are equal up to a slowly varying factor.

Let Ni = {j : ‖xj−xi‖ < r} ≡ {i1, . . . , iKi
} where Ki = |Ni| is the size of

xi’s neighborhood. Let the embedding function ei : RKi → Rn be defined as
ei(v) =

∑Ki

k=1 vieik where ej is the j-th member of the standard basis of Rn.
When ei is applied to a matrix, it is understood that it is applied to each of
its columns.

Note that for a given i, Ki is a binomial random variable, with pa-
rameter n and

∫
‖x−xi‖<r g(x)dx, where g is the sampling density. Thus,

EKi = O(nrd), and Ki = Op(nr
d). Since g is bounded from above and

away from zero, and no more than n means are considered, Ki = Ωp(nr
d)

uniformly. That is, both maxiKi = Ωp(nr
d) and miniKi = Ωp(nr

d). Simi-
larly, all convergence statements below are regarding Op(n) means and hold
uniformly over all neighborhoods (and hence a slowly varying factor is needed
in their statement).
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We are now ready to start the proof. Let xi = f(zi) and assume that
dist(xi, f(∂Ω)) > r. Let Xi be the neighborhood of xi, and note that that
the rows of Xi are drawn from a continuous bounded density, and thus are
asymptotically uniformly spread on B(xi, r) ∩ f(Ω). Let Ui1 = XiVi1L

−1
i1 ∈

RKi×d be the neighborhood Xi after projection on the first d-directions and
rescaling, where Ui1, Li1, and Vi1 are defined as in (4). Note that the columns
of Ui1 are of norm 1 in RKi , and hence its rows are uniformly distributed on
a ball of Rd of radius Op(1/

√
Ki) up to some errors due to the stochastic

distribution of the points, the curvature of the manifold, and the change in
the density. These errors are Ωp(K

−1/2
i ), Op(1/Ki) (the difference between

the projection on the tangent and geodesic distance within a ball with radius
scaled to Op(1/

√
Ki)), and Op(1/Ki) (since the distribution is uniform up to

a linear Op(1/
√
Ki) term), respectively.

We now characterize the weight vector wi for any inner point zi. Recall
that by Lemma 3.1,

wi =
(I − Ui1U ′i1)1

1′(I − Ui1U ′i1)1

where 1 is the vector of ones of length Ki and I is the Ki×Ki identity matrix.
Let {U (1)

i1 , . . . , U
(d)
i1 } be the d columns of Ui1. Note that up to an O(1/Ki)

error, the points of U
(m)
in , m = 1, . . . , d are a projection of points that are

uniformly distributed in a d-dimensional ball of radius Ωp(1/
√
Ki), and thus

are distributed according to some symmetric distribution on a segment of
length Ωp(2/

√
Ki). By the symmetry and the size of the error, 1′U

(m)
i1 =

Op(1) and hence also 1′(Ui1U
′
i1)1 = Op(1) and the components of Ui1U

′
i11

are of magnitude Op(1/
√
Ki). Since 1′I1 = Ki, we conclude that

wij =

{
1/Ki + Op(K

−3/2) ‖xj − xi‖ < r
0 otherwise

. (19)

We would like to compare the embedding in Rn of weight vectors of
two close-by points xi and xj, such that ‖xi − xj‖ < ρ. Note that the
minimal number of points within a ball of radius ρ centered on one of the
observations is increasing to infinity with probability converging to 1, yet it is
a small fraction of the number of observations within the radius r balls, and
that adjacent neighborhoods mostly overlap: maxi,j:‖xi−xj‖<ρ |Ni	Nj|/|Ni| =
Op(ρ/r), where 	 denotes the symmetric difference (the cardinality of the
symmetric difference is bounded by the number of points in the shell between
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the spheres with radius r − ρ and r + ρ). We conclude

max
{j:‖xi−xj‖<ρ}

‖ei(wi)− ej(wj)‖2 ≤
∑

k∈Ni∩Nj

((ei(wi)k − ej(wj)k))2

+
∑

k∈Ni	Nj

(ei(wi)k − ej(wj)k)2

= Op(K ·K−3 +Kρ/r ·K−2) = Op(ρ/(rK)) .

(20)

Next, recall that the embedding Yn = {y1, . . . , yn} is given by the 2, . . . , d+
1 lowest eigenvectors of I −M ≡ (I −W )′(I −W ), where

Y(m)i = (1− λm)−1

n∑
k=1

MikY(m)k (21)

(see Saul and Roweis, 2003, Section 4). We would like to show that the
matrix M inherits the continuity property from W . In other words, whenever
‖xi − xj‖ < ρ we have

n∑
k=1

|Mik −Mjk|2 = Op(ρ/(rK)) = Op(ρn
−1r−(d+1) . (22)
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Indeed, let ‖xi − xj‖ < ρ such that dist(zi, ∂Ω) > 2r + ρ. Then

n∑
k=1

|Mik −Mjk|2 =
n∑
k=1

(
(Wik −Wjk) + (Wki −Wkj)−

n∑
s=1

Wsk(Wsi −Wsj)
)2

≤ 3
n∑
k=1

(
(Wik −Wjk)

2 + (Wki −Wkj)
2 + (

n∑
s=1

Wsk(Wsi −Wsj))
2
)

= Op(ρ/(rK)) + 3
∑

k∈Ni∩Nj

(ek(wk)i − ek(wk)j)2 +
∑

k∈Ni	Nj

(ek(wk)i − ek(wk)j)2

+ 3
n∑
k=1

n∑
s=1

n∑
t=1

WskWtk(Wsi −Wsj)(Wti −Wtj)

= Op(ρ/(rK)) + 3
∑

t,s∈Ni∩Nj

(Wsi −Wsj)(Wti −Wtj)
∑

k∈Ns∩Nt

WskWtk

+ 3
∑

t,s∈Ni	Nj

(Wsi −Wsj)(Wti −Wtj)
∑

k∈Ns∩Nt

WskWtk

+ 3
∑

s∈Ni∩Nj ;t∈Ni	Nj

(Wsi −Wsj)(Wti −Wtj)
∑

k∈Ns∩Nt

WskWtk

≡ Op(ρ/rK) + (A) + (B) + (C)

Recall that by assumption dist(zi, ∂Ω) > 2r + ρ, and hence for every s ∈
Ni ∪Nj, the respective distance of xs and f(∂Ω) is at least r (see (18)), thus
we can use the bound (20). We now bound the expressions (A), (B), and
(C). Note that

∑
k∈Ns∩Nt

WskWtk = Op(K
−1), and that for s, t ∈ Ni ∩ Nj,

both (Wsi−Wsj) and (Wti−Wtj) equal Op(K
−3/2). Since there are less then

K2
i pairs s, t in Ni ∩Nj, we conclude that (A) = Op(K

−2).
For (B), note that there are Op((Kρ/r)

2) pairs of points t, s ∈ Ni 	Nj,
and that for these points, (Wsi−Wsj) and (Wti−Wtj) are 1/K+Op(K

−3/2).
We conclude that (B) = Op(K

−1(ρ/r)2). Similarly, it can be shown that
(C) = Op(K

−1ρ/r). Summarizing we obtain (22).
Denote the columns of the embedding Y by {Y (1), . . . , Y (d)} and sim-

ilarly for the pre-image Z. Recall that 1
n
Y (m)′Y (m) = 1, and that ‖(I −

W )Y (m)‖ = Y (m)′MY (m) minimizes the norm ‖(I − W )v‖ over all vectors
v such that n−1v′v = 1 which are not in the span of {1, Y (1), . . . , Y (m−1)}.
On the other hand, by Theorem 5.2, there are d normalized vectors, namely
Z(1), . . . , Z(d) ∈ Rn, and ζn

p→ 0, such that ‖(I − W )Z(m)‖ < ζn. There-
fore, I −M has at least d + 1 eigenvalues (including 0) less than ζn. Since
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(I −M)Y (m) = λmY
(m) for |λm| < ζn, we obtain that

Y
(m)
i = (1− λm)−1

n∑
k=1

MikY
(m)
k (23)

Let ‖xi − xj‖ < ρ, then(
Y

(m)
i − Y (m)

j

)2

= (1− λm)−2
( n∑
k=1

(Mik −Mjk)Y
(m)
k

)2

≤ (1− λm)−2
( ∑
{k:Mik 6=0}

(Mik −Mjk)
2
) n∑
k=1

(
Y

(m)
k

)2

= Op(ρ/rKi) · n = Op(ρ/r
d+1) , (24)

where the first inequality follows from application of Cauchy-Schwarz, and
the equalities in the third line follow from (22), the assumptions on ρ, and
the fact that ‖Y ‖2 = n.

Using Lemma 3 of Bernstein et al. (2000), we have

‖ηj − xi‖ ≤ dM(ηj, xi) ≤ cmax ‖τj − zi‖ . (25)

Thus, if ‖zi − zj‖ < ρo then ‖xi − xj‖ < ρo/cmax ≡ ρ. If nrd(d+1+η) →∞, we
can take ρ = rd+1+η (note that nρd →∞) and (9) holds.

Now sum (24) over all points within 2r from the boundary. Since Y
(m)
i is

included in Op(Ki) terms, we obtain for any ρ� r:

1

n

∑
{i:dist(xi,∂Ω)>2r+ρ}

max
{j:‖xi−xj‖<ρ}

(Y
(m)
i − Y (m)

j )2 ≤ Op(ρ/r)
1

n

n∑
k=1

(
Y

(m)
k

)2

= Op(ρ/r) ,

and (8) holds.

S5 Proof of Theorem 5.4

Consider first the local description of the curve. Let zi be the pre-image of
the i-th point. Since the curve f can be reparameterized, without loss of
generality, we assume that the mapping is isometric. We also assume that
z1 ≤ · · · ≤ zn. Thus zj − zi is the geodesic distance between xi and xj along
the curve. Let ξij be the projection of the j-th point on the tangent line at
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xi, and let ri = Op(K/n) be the radius of the i-th neighborhood. Since the
curvature is bounded, difference between the arc length and its projection
is of order r3

i , or ξij ≤ |zj − zi| = ξij + Op((K/n)3), uniformly (see, for
example, Belkin, 2003, Lemma 4.2.1). By construction

∑
j wijξij = 0 while∑

j |wij| = Op(1).
Looking more closely at the description of each point by its neighbors

and at the relation to the curvature of the curve, we have for any point i
(including both inner points and boundary points) that∑

j

wij(zj − zi) =
∑
j

wijξij + Op

(
(K/n)3

)
= Op

(
(K/n)3

)
. (26)

This result can be strengthened for inner points. Since the conditions of
Theorem 5.3 hold, we have for all j ∈ Ni, Wij = 1/2K+Op(K

−3/2). Hence,∑
j

wij(zj − zi) =
∑
j

wij(zj − zi − ξij)

=
1

2K

∑
j

(zj − zi − ξij) + Op

(
K−1/2(K/n)3

)
= Op

(
K−1/2(K/n)3

)
,

(27)

where we used the fact that (zj − zi − ξij) = Op((K/n)3). Since all but 2K
are inner points, we obtain by combining (26) and (27) that

‖(I −W )Z‖2 = Op

(
nK5/n6 +KK6/n6

)
. (28)

We would like to bound ‖(I −W )Y ‖. Note that

‖(I −W )Y ‖ = n1/2 min{‖(I −W )ξ‖ : 1′ξ = 0, ‖ξ‖2 = 1}
≤ n1/2‖(I −W )Z‖/‖Z‖ = Op(K

7/2/n3).
(29)

Here we used (28), and the fact that ‖Z‖2 = (1 + Op(n
1/2))n. As a result we

also obtain that the second smallest eigenvalue of M ≡ (I −W )′(I −W ) is
λ = Op

(
(K/n)7

)
(recall that the smallest is zero, see Saul and Roweis, 2003,

page 17).
Write Y = WY + e, and note that by (29), ‖e‖ = Op(K

7/2/n3) (note
that by definition ‖Y ‖ =

√
n). Iterating this equation we obtain

Y = WmY + (I +W + · · ·+Wm−1)e, m = 1, 2, . . . (30)
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The sum of the entries of the rows of W are all 1. All rows i except the first
and last K rows are both positive and very close to 1/(2K) over the indices
i−K, . . . , i+K. Hence Wi· can be considered as a probability vector, with
weights that are close to uniform on i−K, . . . , i+K and 0 otherwise. To be
more exact, this distribution has mean i+Op(K

−1/2) and standard deviation(
1 + Op(1)

)
K. The inner rows of Wm

ik =
∑

jWijW
m−1
jk are convolutions of

these distributions. Hence all but the first and last mK rows of Wm become
closer and closer to Gaussian distribution with standard deviation

√
mK

centered on the diagonal. In particular 0 ≤ Wm
ij = Op(m

−1/2K−1) for all

mK < i < n − mK. By (19), Wij =
(
1 + Op(K

−1/2)
)
W̄ij, where W̄ij is

either 0 or (2K)−1. But Wm
ij is a sum of products of positive terms, which

are entries of W̄ up to a factor of
(
1 +Op(K

−1/2)
)m

. Hence the inner entries
of Wm are close to those of W̄m, i.e., are close to convolutions of uniform
distribution vectors, up to the factor of

(
1 + Op(K

−1/2)
)m

. In other words

Wm
ij =

(
1 + Op(mK

−1/2)
)
W̄m
ij , mK < i, j < n−mK

max
j
|Wm

ij | = Op(m
−1/2K−1), mK < i < n−mK .

(31)

Hence, for 0 < |j − i| ≤ K:

|Wm
ik −Wm

jk | ≤ |W̄m
ik − W̄m

jk |+ Op(mK
−1/2)(W̄m

ik + W̄m
jk).

= Op(|j − i|m−1/2K−1 +mK−1/2)(W̄m
ik + W̄m

jk)

= Op(m
−1/2 +mK−1/2)(W̃m

ik ) ,

(32)

where W̃ik = 2W̄m
ik + (W̄m

jk − W̄m
ik ). Note that

∣∣W̃ik

∣∣ ≤ 2
∣∣W̄m

ik

∣∣+ supl≤k
∣∣W̄m

lk −
W̄m
ik

∣∣, and thus the distribution of W̃ik can be approximated by twice the sum
of the normal density plus the absolute value of its derivative divided by

√
m.

In particular
∑

k |W̃ik| = O(1) and maxk |W̃ik| = O(m−1/2K−1). On the other
hand, for every ` = 1, . . . ,m− 1, and for every i = mK + 1, . . . , n−mK− 1,

|(W `e)i|2 =
(∑

j

W `
ijej
)2

≤
∑
j

(W `
ij)

2‖e‖2 (by Cauchy-Schwarz)

≤ Op((`
−1/2K−1K7/n6) = Op(`

−1/2K6/n6) ,
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where the last inequality holds since for each inner point∑
j

(W `
ij)

2 ≤ max
j
|W `

ij|
∑
j

|W `
ij||

= Op(`
−1/2K−1) .

(33)

Summing this expression for ` = 1, . . . ,m− 1 we obtain from (30)

max
mK<i<n−mK

‖yi −
∑
j

Wm
ij yj‖ = Op(m

3/4K3/n3).

Using (32), (33), and the fact that ‖Y ‖2 = n, we obtain that for every
Km < i < n−mK, i < j < i+ 2K:

|yj − yi|2 ≤
∣∣∑
k

(Wm
ik −Wm

jk)yk
∣∣2 + Op(m

3/2K6/n6)

≤
∑
k

(Wm
ik −Wm

jk)2
∑
k

|yk|2 + Op(m
3/2K6/n6)

≤ nOp(m
−1 +m2K−1)

∑
k

(W̃m
ik )2 + Op(m

3/2K6/n6) (using ‖Y ‖2 = n and (32))

= Op(
n

m3/2K
+
nm3/2

K2
+
m3/2K6

n6
) (by (33))

= Op

(
(K/n)1/2

)
,

(34)

by taking m to n/K divided by a slowly varying function. We conclude that
the maximal difference |yj − yi| for two interior neighboring points, at most
2K points apart, converges to 0.

Write now M = I−W −H, where H = W ′−W ′W . Note that
∑

j Hij =∑
jWji−

∑
j

∑
kWkiWkj =

∑
jWji−

∑
kWki = 0, Wji ≈ 1/2K if |j−i| < K

and 0 otherwise, while
∑

kWkiWkj ≈ (|j − i| − 2K)/2K2 for points xj with
|j − i| < 2K. Hence H essentially computes the Hessian of Y . Formally,

Hij = H0
ij + Op(K

−3/2) (35)

by (19), where

H0
ij =


|j − i|/2K2 |j − i| < K ,

(|j − i| − 2K)/2K2 K < |j − i| < 2K ,

0 otherwise .
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Now,

λn1/2 = λ‖Y ‖ (by the normalization of Y )

= ‖(I −M)Y ‖ (being eigenvalue)

= ‖(I −W )Y −HY ‖ (definition of H)

≥ ‖HY ‖ − ‖(I −W )Y ‖ = ‖HY ‖ − (λn)1/2 (triangular inequality) .

Hence, since λ = Op

(
(K/n)6

)
(see discussion below (29)),

‖T‖ ≤ 2(λn)1/2 = Op

(
K7/2/n3

)
, (36)

where T = HY . Define

A+
i =

K∑
j=1

j

K2
yi+j

A−i =
K∑
j=1

j

K2
yi−j,

(37)

and note that
∑

j H
0
ijyj = −A−i−K +A+

i−K +A−i+K −A
+
i+K . We combine (34)

with (35) and then (36), noting that
∑

j H
0
ij =

∑
j Hij = 0:

(A+
i−K − A

−
i−K) = (A+

i+K − A
−
i+K) +

∑
j

H0
ijyj

= (A+
i+K − A

−
i+K) +

∑
j

H0
ij(yj − yi)

= (A+
i+K − A

−
i+K) +

∑
j

Hij(yj − yi) + Op

(
K ×K−3/2 × (K/n)1/4

)
= (A+

i+K − A
−
i+K) +

∑
j

Hijyj + Op(n
−1/4K−1/4)

Iterating this equation ν < (n− i)/2K times, we obtain

(A+
i−K − A

−
i−K) = (A+

i+(2ν−1)K − A
−
i+(2ν−1)K) +

ν∑
m=0

Ti+mK + Op

(
n3/4/K5/4

)
,

(38)
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Rewriting (38) and denoting k = 2ν we obtain

(A+
i+j − A−i+j) = (A+

k+j − A
−
k+j) +

ν+1∑
m=1

Ti+j+mK + Op(n
3/4/K5/4). (39)

Note that by Cauchy-Schwarz, the bound on ν, and (36):

|
∑̀
j=1

ν+1∑
m=1

Ti+j+mK | ≤ (ν + 1)
n∑
j=1

|Tj| ≤
n

K
n1/2‖T‖ = Op(K

5/2/n3/2) (40)

Now, careful examination of
∑`

j=1(A+
i+j − A−i+j) shows that this sum de-

pends only on the values of the ys near the edges of the range:

∑̀
j=1

(A+
i+j − A−i+j) =

∑
Vkyi+`+k −

∑
Vkyi+k (41)

where Vk ≥ 0, Vk is supported on −K, . . . ,K, Vk ≈ k2/2K2, and hence∑
k Vk ≈ K/3. By (34) we obtain that

∑
j Vjyi+j = yi

∑
j Vj+Op(n

−1/4K3/4).
Summing both sides of (39) over j = 1, . . . , `, dividing by K, and then using
(40), (41), and the continuity of y as given in (34) yields

yi+` − yi = yk+` − yk + Op(`n
3/4/K9/4 +K3/2/n3/2 + (K/n)1/4)

= yk+` − yk + Op(1).
(42)

References

M. Belkin. Problems of Learning on Manifolds. PhD thesis, The University
of Chicago, 2003.

M. Bernstein, V. de Silva, J. C. Langford, and J. B. Tenenbaum. Graph
approximations to geodesics on embedded manifolds. Technical report,
Stanford University., 2000.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, Maryland, 1983.

L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning
of low-dimensional manifolds. J. Mach. Learn. Res., 4:119–155, 2003. ISSN
1533-7928.

15


	Proof of Lemma 3.1
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Theorem 5.4

