
STATS 413 PROBLEM SET 4 SOLUTION

This problem set is due at noon ET on Oct 7, 2021. Please upload your solutions to Canvas in
two files: a PDF file containing the solutions and a ZIP file containing code that reproduces any
computer output in the solutions. You are encouraged to collaborate on problem sets with your
classmates, but the final write-up (including any code) must be your own.

1. Maximum likelihood estimator of σ2. Under the linear model with Gaussian error
terms, we saw that the is the maximum likelihood estimator (MLE) of β∗ is the OLS estimator β̂.
Show that the MLE of σ2 is

s2 =
1

n

n∑
i=1

(yi − xTi β̂)2.

Is it an unbiased estimator of σ2?

Solution: ε ∼ N(0, σ2) So we have p(yi|xi, β̂) = 1√
2πσ2

exp−
(yi−x

T β̂)2

2σ2

the MLE is L(β̂, s2) = log(
∏
p(yi|xi, β̂)) = −n

2 log(2π)− n log(s)− 1
2s2

∑
(yi − xtβ̂)2

∂L
∂s2

= 0

So s2 = 1
n

∑
(yi − xTi β̂)2

It is biased, since the denominator should be degrees of freedom (n - 1)

2. Returns to scale lab. Download nerlove.csv from the course website. It has data on

• TC: total costs (in millions of dollars)
• Q: output (in terawatt hours)
• PL: price of labor
• PF: price of fuel
• PK: price of capital

for 145 utilities companies in 1955. Let ci = TCi, qi = Qi, pl,i = PLi, pf,i = PFi, pc,i = PKi.

(a) Fit the restricted model yi = xTi β + εi, where

(4.1) yi = log
ci
pc,i

, xi =
[
1 logqi log

pl,i
pc,i

log
pf,i
pc,i

]T
,

to all 145 companies, and plot the residuals. Are there any trends in the residuals? What do
they suggest about the degree of returns to scale?

(b) To deal with these issues, Nerlove divided the companies into 5 groups of 29 companies,
ordered by output, and fit the restricted model separately to each group. Following Nerlove,
fit the restricted model separately to each group. In other words, to each group j = 1, . . . 5,
we fit the model

y(j) = X(j)β(j) + ε(j),

where y(j), ε(j) ∈ R29 are the vectors of responses and error terms of the companies in the
group, X(j) ∈ R29×4 is the matrix of features of the companies in the group, and β(j) ∈ R4

is the vector of regression coefficients of the group. What is the trend in the fitted degree of
returns to scale as output increases? What is the trend in the estimated error variances as
output increases?
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(c) Consider a model where the regression coefficients are different but the error variance is
identical across the 5 groups of companies. In matrix notation, the model isy

(1)

...

y(5)

 =

X
(1)

. . .

X(5)


β

(1)

...

β(5)

 +

ε
(1)

...

ε(5)


This is a more general model than the model fit in part (a). Fit this model and compare the
fitted coefficients to those from part (b).
Hint: It is possible to encode this model using interactions between five dummy variables
that indicate group membership and the features.

(d) Consider a model where only β0 and β1 are different across the 5 groups of companies. Fit
this model and compare the fitted coefficients to those from part (a). Are the trends in the
fitted degree of returns and estimated error variances present?
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Lab Solution

R Markdown
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and
MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the
output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)

## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00

Including Plots
You can also embed plots, for example:
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Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that
generated the plot.
library(matlib)

## Warning: package 'matlib' was built under R version 4.0.5
data = read.csv('nerlove.csv')
lm.model = lm(log(TC/PK)~log(Q)+log(PL/PK)+log(PF/PK), data)
plot(lm.model, which = 1)
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So the residuals are quadratic trends. Indicating that the return to scale is heteroskedasticity
group_1 = data[1:29,]
group_2 = data[30:58,]
group_3 = data[59:87,]
group_4 = data[88:116,]
group_5 = data[117:145,]

lm.model_1 = lm(log(TC/PK)~log(Q)+log(PL/PK)+log(PF/PK), data = group_1)
lm.model_2 = lm(log(TC/PK)~log(Q)+log(PL/PK)+log(PF/PK), data = group_2)
lm.model_3 = lm(log(TC/PK)~log(Q)+log(PL/PK)+log(PF/PK), data = group_3)
lm.model_4 = lm(log(TC/PK)~log(Q)+log(PL/PK)+log(PF/PK), data = group_4)
lm.model_5 = lm(log(TC/PK)~log(Q)+log(PL/PK)+log(PF/PK), data = group_5)

print(1/lm.model_1$coefficients[2])

## log(Q)
## 2.48793
print(1/lm.model_2$coefficients[2])

## log(Q)
## 1.519019
print(1/lm.model_3$coefficients[2])

## log(Q)
## 1.074868
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print(1/lm.model_4$coefficients[2])

## log(Q)
## 1.095438
print(1/lm.model_5$coefficients[2])

## log(Q)
## 0.9547541
print(var(lm.model_1$residuals))

## [1] 0.3145307
print(var(lm.model_2$residuals))

## [1] 0.05257216
print(var(lm.model_3$residuals))

## [1] 0.03530706
print(var(lm.model_4$residuals))

## [1] 0.01249852
print(var(lm.model_5$residuals))

## [1] 0.01962354

So return to scale is decresing and variance of estimated error is decresing as outputs increase.
df = matrix(0, nrow = 145, ncol = 21)

df[, 1] = log(data$TC/data$PK)

df[1:29, 2] = rep(1, 29)
df[1:29, 3] = log(group_1$Q)
df[1:29, 4] = log(group_1$PL/group_1$PK)
df[1:29, 5] = log(group_1$PF/group_1$PK)

df[30:58, 6] = rep(1, 29)
df[30:58, 7] = log(group_2$Q)
df[30:58, 8] = log(group_2$PL/group_2$PK)
df[30:58, 9] = log(group_2$PF/group_2$PK)

df[59:87, 10] = rep(1, 29)
df[59:87, 11] = log(group_3$Q)
df[59:87, 12] = log(group_3$PL/group_3$PK)
df[59:87, 13] = log(group_3$PF/group_3$PK)

df[88:116, 14] = rep(1, 29)
df[88:116, 15] = log(group_4$Q)
df[88:116, 16] = log(group_4$PL/group_4$PK)
df[88:116, 17] = log(group_4$PF/group_4$PK)

df[117:145, 18] = rep(1, 29)
df[117:145, 19] = log(group_5$Q)
df[117:145, 20] = log(group_5$PL/group_5$PK)
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df[117:145, 21] = log(group_5$PF/group_5$PK)

lm.model_general = lm(df[,1]~0+df[,-1])

summary(lm.model_general)

##
## Call:
## lm(formula = df[, 1] ~ 0 + df[, -1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.44342 -0.11692 -0.00686 0.12871 1.08446
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## df[, -1]1 -3.00535 1.62628 -1.848 0.066967 .
## df[, -1]2 0.40194 0.04422 9.090 1.88e-15 ***
## df[, -1]3 0.70017 0.37957 1.845 0.067454 .
## df[, -1]4 0.44678 0.17002 2.628 0.009668 **
## df[, -1]5 -6.59152 1.81444 -3.633 0.000408 ***
## df[, -1]6 0.65832 0.14988 4.392 2.37e-05 ***
## df[, -1]7 0.07027 0.35080 0.200 0.841558
## df[, -1]8 0.53042 0.19022 2.788 0.006125 **
## df[, -1]9 -7.23763 2.71904 -2.662 0.008793 **
## df[, -1]10 0.93035 0.31239 2.978 0.003484 **
## df[, -1]11 0.40941 0.32863 1.246 0.215164
## df[, -1]12 0.35313 0.24481 1.442 0.151674
## df[, -1]13 -6.33692 3.05961 -2.071 0.040402 *
## df[, -1]14 0.91288 0.27802 3.283 0.001330 **
## df[, -1]15 0.55415 0.49916 1.110 0.269056
## df[, -1]16 0.40241 0.15451 2.605 0.010315 *
## df[, -1]17 -6.66442 2.15125 -3.098 0.002407 **
## df[, -1]18 1.04739 0.13451 7.787 2.26e-12 ***
## df[, -1]19 0.62143 0.40825 1.522 0.130488
## df[, -1]20 0.68142 0.27583 2.470 0.014843 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.312 on 125 degrees of freedom
## Multiple R-squared: 0.9939, Adjusted R-squared: 0.993
## F-statistic: 1024 on 20 and 125 DF, p-value: < 2.2e-16

So the coefficients are similar to the coefficients we get from Part(b)
df = matrix(0, nrow = 145, ncol = 13)

df[, 1] = log(data$TC/data$PK)

df[1:29, 2] = rep(1, 29)
df[1:29, 3] = log(group_1$Q)

df[30:58, 4] = rep(1, 29)
df[30:58, 5] = log(group_2$Q)
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df[59:87, 6] = rep(1, 29)
df[59:87, 7] = log(group_3$Q)

df[88:116, 8] = rep(1, 29)
df[88:116, 9] = log(group_4$Q)

df[117:145, 10] = rep(1, 29)
df[117:145, 11] = log(group_5$Q)

df[, 12] = log(data$PL/data$PK)
df[, 13] = log(data$PF/data$PK)

lm.model_new = lm(df[,1]~0+df[,-1])

summary(lm.model_new)

##
## Call:
## lm(formula = df[, 1] ~ 0 + df[, -1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4524 -0.1370 0.0059 0.1328 1.0978
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## df[, -1]1 -4.07552 0.70970 -5.743 6.04e-08 ***
## df[, -1]2 0.39765 0.04298 9.252 4.88e-16 ***
## df[, -1]3 -4.92085 1.13379 -4.340 2.80e-05 ***
## df[, -1]4 0.64395 0.14695 4.382 2.36e-05 ***
## df[, -1]5 -6.46355 2.24171 -2.883 0.00459 **
## df[, -1]6 0.87616 0.29674 2.953 0.00373 **
## df[, -1]7 -6.63637 2.22119 -2.988 0.00335 **
## df[, -1]8 0.91049 0.27300 3.335 0.00111 **
## df[, -1]9 -7.98587 1.37892 -5.791 4.79e-08 ***
## df[, -1]10 1.06413 0.13097 8.125 2.71e-13 ***
## df[, -1]11 0.45123 0.16519 2.732 0.00716 **
## df[, -1]12 0.46730 0.08364 5.587 1.25e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3068 on 133 degrees of freedom
## Multiple R-squared: 0.9938, Adjusted R-squared: 0.9932
## F-statistic: 1764 on 12 and 133 DF, p-value: < 2.2e-16

The trend of fitted degree of returns is also decreasing as outputs increase. However, the estimated error
become homoskedasticity
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