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One major task of biological research is to understand how 
genotypes and phenotypes correspond to each other, which 
is known as genotype–phenotype mapping (GPM)1,2. An 

incremental approach for GPM is to measure the phenotypic con-
sequences of genetic mutations3–7. Mutational effects on phenotypes 
are generally believed to be dependent on many other genetic fac-
tors (that is, epistasis)4,6–10. For mutations within genes, the pheno-
typic effects are expected to be influenced by the expression level 
of the gene, as mutations are most likely to be neutral when they 
occur in a ‘gene’ with zero expression. Indeed, comparisons among 
different genes have provided indirect evidence of stronger deleteri-
ous effects of mutations occurring in highly expressed genes11,12. In 
addition, a more recent study13 showed that the gene expression level 
can significantly alter the effects of mutations within a functional 
domain of a focal gene as well as how they interact. Nevertheless, a 
full understanding of the influence of the gene expression level on 
the effect of mutations should be based on the full coding sequence 
(CDS) instead of a limited domain.

Organismal fitness is arguably the single most important phe-
notype among all phenotypes, as it is the ultimate target of natu-
ral selection and therefore dictates biological evolution14. Genetic 
mutations leading to a significant decrease in fitness (that is, 
deleterious mutations) tend to have a general association with 
early-onset, severe genetic disorders15–18 and will eventually be 
removed from the genetic pool of evolving populations by nega-
tive selection14. Given the prevalence of negative selection relative 
to positive selection19 (which causes fitness-increasing beneficial 
mutations to spread and ultimately become fixed in the popula-
tion), the exclusion of deleterious mutations will slow the evolu-
tion of the sequence of a gene. Comparisons among genes within 
the same genome have revealed a strong anticorrelation between 

the expression and the evolutionary rate of protein-coding genes 
(the ER-anticorrelation), which can be found in all three domains 
of life12. Assuming similar mutational inputs for different genes, 
the ER-anticorrelation suggests that mutations occurring in highly 
expressed genes are generally more deleterious.

Why are mutations in highly expressed genes more deleteri-
ous? Multiple molecular mechanistic models have been proposed 
to answer this question12. The currently prevailing models can be 
overarchingly summarized as avoidance of molecular stochastic 
errors, including mistranslation11,20, protein misfolding21 and mis-
interaction22. Specifically, these errors have been hypothesized 
to impose a greater burden on the cell when they occur in highly 
expressed genes than when they occur in genes with low expression 
because the former should give rise to greater amounts of errone-
ous protein molecules (in the case of mistranslation or misfolding) 
or complexes (in the case of misinteraction). Multiple studies have 
provided indirect support for these error avoidance hypotheses by 
comparing different genes within the same genome; for example, 
by evaluating the preference for less error-prone residues/codons 
in highly expressed genes or higher error rates in genes with low 
expression11,21–23. The existence of molecular stochastic errors has 
also been suggested to influence organismal fitness24. However, 
direct evidence supporting these hypotheses (that is, a greater fit-
ness cost of mutations predicted to be deleterious by these error 
avoidance models in highly expressed genes relative to when the 
same genes are lowly expressed) is still lacking, as is knowledge  
of the relative contribution of these errors to the fitness effects of 
CDS mutations.

In this study, we used doped oligonucleotide synthesis to  
construct variant libraries of the green fluorescent protein (GFP) 
gene and the URAcil-requiring (URA3) gene from Saccharomyces 
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cerevisiae with full single-nucleotide mutation coverage across their 
whole CDSs as well as unique barcodes attached to each variant, 
which were determined by PacBio circular consensus sequenc-
ing25 (PacBio-CCS). The fitness effects of individual mutations 
(that is, the local fitness landscape) were then evaluated by mea-
suring the relative fitness of each variant in competitive cultures 
of single variant-containing yeast strains, followed by Illumina 
high-throughput sequencing of the barcodes. We compared the 
fitness landscape of the genes when they were individually driven 
by two promoters with an approximately tenfold activity difference 
and showed that such expression differences significantly altered 
the fitness effects of CDS mutations. Contrasting the fitness land-
scape of GFP (an exogenous gene) with that of URA3 (a function-
ally required gene) enabled us to distinguish the mutational effects 
caused by increased stochastic molecular errors from those caused 
by decreased functional activity. Finally, although only a small frac-
tion of variation in fitness effects among mutations in the same 
expression level can be explained by the examined hypotheses, we 
found protein misfolding as the most deleterious type of molecular 
error among those examined, thereby suggesting greater contribu-
tion of misfolding avoidance in constraining the evolution of highly 
expressed genes compared to the other hypothesized mechanisms. 
Our results therefore constitute direct experimental validation of 
the prevailing hypotheses underlying the ER-anticorrelation and, 
more importantly, highlight the role of molecular stochastic errors 
in the phenotypic consequences of genetic mutations.

Results
Whole-CDS measurement of the local fitness landscape. We 
aimed to measure the fitness effect (selective coefficient, s) of all 
single-nucleotide mutations within the CDS of a protein-coding 
gene. Similar experiments, including those evaluating the functional 
landscapes of some non-fitness traits, such as fluorescence inten-
sity, have been previously reported for short non-coding genes6,7,26, 
short regions within the CDS or regions with low coverage of 
single-nucleotide variants5,24. There are two challenges that must be 
met to achieve our goal. The first is to obtain variant libraries with 
full coverage of all single-nucleotide mutations across the whole 
CDS (~1,000 base pairs (bp), 3,000 single-nucleotide mutations). 
The random introduction of mutations into the wild-type CDS, 
for example, via error-prone PCR5 or totally degenerate mixtures24, 
tends to result in multiple mutations and missed single-nucleotide 
mutations. On the other hand, doped oligonucleotide synthesis pro-
vides better control over the fraction of single-nucleotide mutations 
but is only applicable to regions shorter than 100 bp. To resolve this, 
we split the focal gene (GFP or URA3) into non-overlapping sub-
regions of 50 bp and used doped oligonucleotide synthesis with a 
mutation rate of 3% (1% per non-wild-type nucleotide) per site to 
get mutation primers for each subregion, which was concatenated 
by multiple rounds of fusion PCR to obtained the mutant library 
within an expression cassette (Fig. 1a and Extended Data Fig. 1a–d). 
Within the expression cassette, the focal gene was also accompanied 
by the proper promoter (PTDH3 or PAGP1), a terminator, a barcode for 
distinguishing genotypes (see the next paragraph) and a transfor-
mation marker (LEU2). The mutant libraries for all subregions were 
then pooled together to form a full mutant library (Fig. 1b) for each 
combination of promoter and focal gene.

The second challenge is the simultaneous determination of the 
relative fitness of all variants. We used the 20 random nucleotides 
added downstream of the terminators during fusion PCR as bar-
codes for each variant (Fig. 1a, Extended Data Fig. 1b; Methods). The 
full mutant library was then bulk-transformed into a BY4741-based 
acceptor strain and integrated into the HO locus (Fig. 1b and 
Extended Data Fig. 1e–g; Methods). The transformants were sub-
sequently subjected to PacBio-CCS (ref. 25) to determine the cor-
respondence between the barcodes and genotypes (Fig. 1c and 

Supplementary Table 1). The relative fitness of variants with known 
barcodes could then be determined by the competitive coculture of 
the integrated strains (Fig. 1c), followed by variant frequency esti-
mation via HiSeq sequencing (or NovaSeq, collectively referred to 
as HiSeq hereafter) of the barcodes (Fig. 1c, Supplementary Table 2 
and Extended Data Fig. 1h). Following this experimental procedure, 
we constructed four variant libraries targeting two genes (GFP and 
URA3), each of which was driven by two different promoters (PTDH3 
and PAGP1) whose activities differed by about tenfold27 (Extended 
Data Fig. 2a).

To verify the accuracy of our experimental pipeline, the expres-
sion cassettes of some randomly chosen colonies were amplified 
and subjected to Sanger sequencing (Fig. 1c). For example, for 
the PTDH3-GFP library, we found that for all mutants sequenced 
by both Sanger sequencing and PacBio-CCS, identical sequences 
were obtained from the two methods (see Supplementary Table 1  
for other libraries), indicating highly reliable correspondence 
between genotypes and barcodes. We captured at least one barcode 
for a total of 32,376 variants by PacBio-CCS, covering 99.3% of the 
single-nucleotide mutations and some multiple mutation variants 
(Fig. 1d and Supplementary Table 1). The frequencies of variants 
determined by HiSeq-based sequencing (Supplementary Table 2 
and Extended Data Fig. 1h) were highly correlated between bio-
logical replicates of the same timepoint (Fig. 1e; average Pearson’s 
R = 0.980) and were less correlated between samples from different 
timepoints (Pearson’s R = 0.947; Fig. 1e and Extended Data Fig. 1h).

On the basis of the read counts, we estimated the relative fitness 
per generation by contrasting the read count changes of a geno-
type during the coculture with that of the wild type (Methods). 
Multiple measures were applied to ensure reliable fitness estima-
tion. For example, we discarded wild-type barcodes with extreme 
day 7/day 0 frequency ratios (Extended Data Fig. 2b) to avoid esti-
mation skewed by these outliers. We further required that the bar-
codes for each variant had at least 100 reads at the initial library, 
so that fitness could be measured at a reasonable resolution/accu-
racy. As a result, we obtained the fitness estimates of 29,795 vari-
ants in PTDH3-GFP (see Supplementary Table 2 for other libraries) 
covering 99.2% of its single-nucleotide mutations (Fig. 2a and see  
Fig. 2b–h for the other competitive experiments). We further tested 
the accuracy of these fitness estimates via assessing the coefficient  
of variation among barcodes of the same variant (Extended Data  
Fig. 2c), the between-replicate correlations of the estimates 
(Extended Data Fig. 2d,e and Supplementary Table 3), consistency 
between estimates from day 3 and day 7 (Extended Data Fig. 2f), 
enrichment of deleterious mutations around the activity centre of 
the protein28 (Extended Data Fig. 2g), distribution of fitness effect of 
synonymous versus non-synonymous mutations (Fig. 2i–p) or finer 
classifications of mutation types (Extended Data Fig. 2h), measur-
ing double time individually for ten least-fit and ten fittest geno-
types (Extended Data Fig. 2i). Collectively, these analyses offered 
general support for the reliability of the fitness estimates (more 
details in Methods).

The fitness effects of single-nucleotide mutations are expres-
sion dependent. When the fitness effect of a given mutation was 
compared between PTDH3-GFP (sH, fitness effect of the mutation 
when it occurs on a highly expressed gene) and PAGP1-GFP (SL, fit-
ness effect of the mutation when it occurs on a lowly expressed 
gene), at least 42% of the mutations (Fig. 3a; Mann–Whitney U-test 
by the biological replicates) displayed expression-dependent fit-
ness effects. Similarly, the ‘expression effect’ (the difference between 
SH and SL) was evident in the URA3 libraries (Fig. 3b–d), suggest-
ing that regardless of the functional importance of the gene, the 
fitness effects of mutations are usually expression dependent. We 
then asked whether the expression effect tended to be positive  
(high expression level of a specific mutation is more beneficial/less 
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deleterious than its low expression level) or negative (high expression 
level of a specific mutation is more deleterious/less beneficial than 
its low expression level). For GFP, elevated expression resulted in 
significant positive effects for 422 mutations and significant negative 
effects for 589 mutations (binomial P < 10−6, Fig. 3a). Similar obser-
vations recorded for URA3 variants competing in yeast peptone dex-
trose (YPD) medium (Fig. 3b) suggested that when the physiological 
function of the gene was not essential to the survival of the cell, the 
expression effect tended to be negative. In contrast, for URA3 strains 
competing in SC medium, elevated expression tended to result in 
positive (474) instead of negative (391) effects on the mutations 
(binomial P < 0.003, Fig. 3c). This trend became even stronger in 
synthetic complete media without uracil (SC-URA) (548 versus 267, 
binomial P < 10−22, Fig. 3d), indicating that this propensity for a posi-
tive expression effect was probably a consequence of the physiological 
function of the gene. In this case, although uracil was present in SC 
medium, it was likely in short supply, making the function of URA3 
very important for the fast growth of the cells, although not essential.

How can we reconcile the aforementioned contrasting pat-
terns observed for functional (URA3) and non-functional (GFP) 
genes? We sought to answer this question by disentangling the 
expression-dependent and expression-independent compo-
nents of a mutation’s fitness effect. We first confirmed that for 
most variants, ‘mixed’ linear models containing both said com-
ponents tended to outperform an ‘expression-dominant’ mod-
els with no expression-independent components (Extended 
Data Fig. 3a,b). Then, by fitting the mixed model to each vari-
ant, we were able to approximate the expression-dependent and 
expression-independent components by the slope and intercept of 
the linear model, respectively (Fig. 3e and Supplementary Table 4). 
Note that because the traditional intercept (extrapolated y at x = 0) 
does not allow sensible biological interpretation, we instead exam-
ined the intercept at x = 1.15 × 104, which is the average expression 
level among all coding genes27. In other words, this intercept can be 
interpreted as the expected fitness effect of a mutation if it occurs 
to an average gene (Fig. 3e). It turns out that this expected fitness 
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Fig. 1 | overview of the experiment. a, Construction of the variant libraries by the chemical synthesis of ‘mutation primers’ and fusion PCr. The mutation 
primers were chemically synthesized 90-bp oligonucleotides containing a 20-bp invariant sequence, 50 bp of sequences with 3% chance of error and 
another 20-bp invariant sequence. Other sequence elements, including the promoter, invariant regions of the CDS, terminator, barcode and the LEU2 
marker, were concatenated with the mutation primers via two rounds of fusion PCr (Methods and Extended Data Fig. 1a,b). The overlapping parts of 
the primers are identically coloured. b, Variant libraries for different variable regions of the same CDS driven by the same promoter were combined and 
transformed into corresponding acceptor strains (Methods and Extended Data Fig. 1e,f), where the expression cassette was homologously recombined 
with the HO locus. approximately 200,000 clones of the transformants were collected to produce a variant strain pool for each gene and each 
promoter. c, To verify the successful construction of the variant strain pool, ~100 clones from the pool were subjected to Sanger sequencing targeting the 
expression cassette at the HO locus. To determine the relative fitness of the variant strains, the pool was subjected to continuous competitive culture. 
The starting population of the competition experiment was sequenced by PacBio-CCS to assess the correspondence between the genotype and the 
barcode (Methods). Populations at different stages of the competition were subjected to barcode sequencing on the Illumina HiSeq platform so that the 
frequencies of the genotypes could be determined. d, number of variants captured by PacBio-CCS, stratified by the number of mutated nucleotides within 
the CDS. e, For the PTDH3-GFP library competing in YPD medium, the frequencies of mutants were highly replicable between biological replicates but were 
less replicable between samples from different timepoints. note that all Pearson’s R values were calculated without the wild type (WT) because it was 
always the dominant genotype, the inclusion of which would similarly increase all Pearson’s R values. See also Extended Data Fig. 1.
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effect of CDS mutations had an equal chance of being deleteri-
ous or beneficial (binomial P = 0.32, Fig. 3f), which is consistent  
with the non-functional nature of GFP. More importantly, the  

coefficient of the expression-dependent component displayed a  
significant tendency to be negative (binomial P < 10−8, Fig. 3g), 
which suggested that some kind of cellular toxicity (see the next  
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section for the molecular nature of such toxicity) triggered by the 
mutation was increased due to expression elevation. In contrast, 
mixed models fitted to the URA3 mutants competing in SC or 
SC-URA medium tended to give rise to deleterious effects for a gene 
with an average expression level (Fig. 3f) and positive coefficients 
for the expression-dependent component (Fig. 3g). These patterns 
are not unexpected, as URA3 with low to average expression should 
be more sensitive to the mutation-triggered functional degeneration 
than highly expressed URA3 because the activity of PAGP1 was lower 
than needed (Extended Data Fig. 3c) and less responsive (relative 
to PURA3) to the uracil-shortage environment (Extended Data Fig. 
3d). This pattern is also understandable by the diminishing return 
of increasing URA3 expression, in which a mutation-triggered loss 
of functional molecules will give rise to greater functional reduction 
when it occurred on high expression level than on low expression 
level (Extended Data Fig. 3e)

Collectively, the above results suggested two distinct scenarios 
of the expression dependency of fitness effects of mutations. For 
a gene with sufficient expression for its function (GFP in YPD or 
URA3 in YPD), elevated expression tended to increase cellular tox-
icity due to CDS mutations. On the other hand, for a gene that was 

underexpressed for its function (URA3 in SC or SC-URA), elevated 
expression tended to increase cellular tolerance to functional degen-
eration caused by CDS mutations. Because the latter scenario heav-
ily depend on the gene function and the difference between the 
native and optimal (in terms of fitness) expression of the gene29, 
and the broadly observed ER-anticorrelation12 seems to suggest the 
former scenario as the norm (below), we will focus on the cellular 
toxicity component hereafter.

Molecular stochastic errors are more deleterious in highly 
expressed genes. As we observed above, the cellular toxicity caused 
by CDS mutations became more severe as the expression of the gene 
increased. Consequently, the same mutation would be more likely 
to be purged by purifying selection when occurring in a highly 
expressed gene, which effectively means that the sequences of highly 
expressed genes are more constrained and therefore evolve more 
slowly relative to those of the genes with low expression. Indeed, 
the expression level of a gene has been found to be the most impor-
tant determinant of its evolutionary rate (the ER-anticorrelation)12. 
Various molecular-level mechanistic models have been proposed 
to explain why mutations in highly expressed genes are more likely 
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giving rise to a linear model with a significant coefficient of the expression-dependent component, the coefficient/slope was classified as positive (pink, 
exemplified by the pink curve in e) or negative (light pink, exemplified by the light pink curve in e). For both f and g, binomial P values calculated against the 
null expectation of equal probabilities for positive or negative values are indicated as **P < 10−3 and ***P < 10−5. See also Extended Data Fig. 3.
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to be deleterious, among which the prevailing models can be over-
archingly summarized as avoidance of molecular stochastic errors 
(‘error avoidance’ hypothesis). Specifically, mutations that increase 
the probability of protein mistranslation23/misfolding21/misinterac-
tion22 would result in a greater number of erroneous protein mol-
ecules/complexes when occurring in highly expressed genes than 
when occurring in genes with low expression and would therefore 
impose a more severe burden on the cell12. In addition, the second-
ary structure of messenger RNA has been suggested to act as a sup-
pressor of protein mistranslation20 and misfolding30; therefore, the 
error avoidance hypothesis also suggests a stronger requirement for 
mRNA folding among highly expressed genes31. Although indirect 
support for the error avoidance hypothesis has been obtained via 
comparisons among different genes21–23 and fitness effects without 
manipulation of the expression level24, a direct experimental test 
of error avoidance is still lacking. The fitness landscape associated 
with PTDH3 and PAGP1 offered a unique opportunity to explicitly test 
the biological relevance of error avoidance to the ER-anticorrelation 
as well as individual hypotheses regarding different types of sto-
chastic molecular errors.

We aimed to assess the aforementioned hypotheses under a uni-
fied scheme. Briefly, the probability of molecular error for each 
mutant was approximated with commonly used measures (below). 
Then, the fitness effect (s) of each mutation was compared with 
the corresponding error probability (Fig. 4a, b). The avoidance of 
molecular errors would be supported if (1) the correlation between 
the error probability and the fitness effect of mutations was more 
negative for the highly expressed gene than the lowly expressed 
gene (Fig. 4a) and (2) the fraction of deleterious mutations in highly 
expressed genes relative to that in genes with low expression (that is, 
the relative strength of the functional constraint) increased with the 
error probability (Fig. 4b). We followed this scheme to individually 
test the hypotheses of mistranslation avoidance, misfolding avoid-
ance, misinteraction avoidance and the mRNA folding requirement, 
as described below. Note that the biological repeats of each variant 
have been pooled together to obtain a single fitness estimate hereaf-
ter (see Methods regarding pooled or separated biological repeats) 
and we will be presenting in the main text the results based on GFP 
mutant strains growing in YPD, while Extended Data Fig. 4 presents 
the other results.

In the case of mistranslation, unpreferred codons are generally 
considered more prone to translational error because their cognate 
transfer RNA is in short supply or binds to the codon with lower 
affinity23. We therefore approximated the relative translational error 
rate with the decrease in the tRNA adaptation index (tAI)32 due to 
synonymous mutations but we did not obtain support from the 
designed tests (Extended Data Fig. 4a,b; Methods). For misfolding, 
we estimated the relative probability of protein misfolding (Pmisfold) 
compared to that for the wild-type sequence based on the increase 

in protein folding energy (ΔΔG) predicted by I-Mutant33 (Methods) 
and obtained unanimous support from both tests described above 
(Fig. 4c,d, corresponding to Fig. 4a,b, respectively). For misinterac-
tion and mRNA secondary structure, we similarly obtained support 
using the size of intrinsically disordered regions (IDRs), an indica-
tor of the propensity for promiscuous protein–protein interaction34 
(Fig. 4e,f, corresponding to Fig. 4a,b, respectively. See also Extended 
Data Fig. 4c,d, where we used protein surface hydrophobicity but 
found no signal) and the minimum free energy (MFE) of the mRNA 
secondary structure (Fig. 4g,h, corresponding to Fig. 4a,b, respec-
tively). In addition, when the URA3 fitness landscape measured in 
YPD was used, most of the analyses described above yielded sup-
portive results (Extended Data Fig. 4e-j). We also conducted the 
above analyses for the URA3 fitness landscapes measured in SC and 
SC-URA media and found that the patterns generally supported 
the accuracy of the chosen proxies for molecular errors and the 
increased tolerance of mutation-triggered functional degeneration 
(more molecular stochastic errors lead to greater functional degen-
eration) when expression was elevated (Extended Data Fig. 4k–p). 
Collectively, these results constitute direct experimental valida-
tion of the error avoidance hypothesis (specifically for misfolding/
misinteraction avoidance and the mRNA folding requirement but 
not for mistranslation avoidance) and therefore offer an important 
mechanistic explanation for the expression dependency of the fit-
ness effects of CDS mutations.

Relative importance of misfolding, misinteraction and the 
mRNA folding requirement. We have demonstrated that pro-
tein misfolding/misinteraction and the mRNA folding require-
ment underlie the expression dependency of mutational effects but 
their relative importance remains unresolved. We approached this 
question by fitting a linear model for the PTDH3-associated fitness 
landscapes using the normalized Pmisfold, IDR and MFE values of all 
mutations in the gene (GFP or URA3). The regressed model gave 
rise to the most significant coefficient for Pmisfold but less significant 
coefficients for misinteraction and mRNA folding (Fig. 5a). These 
results suggested that, among the three examined hypotheses, pro-
tein misfolding is the most deleterious factor for highly expressed 
genes and therefore contributed most to the constrained evolution 
of highly expressed genes. Nevertheless, we note that in this linear 
model, only a small fraction (<6%) of the variation in mutational 
fitness effect can be explained by the physiological properties cap-
tured by the three examined hypotheses (Supplementary Table 5).

To further explore the functional constraint due to misfolding/
misinteraction avoidance and the mRNA folding requirement, we 
conducted additional detailed analyses of functional constraint 
and mutational sensitivity. Here, functional constraint is the extent 
to which random mutations, due to their deleterious effects, are 
purged by natural selection. And mutational sensitivity refers to the 

Fig. 4 | Stochastic molecular errors can explain the stronger deleterious effect of mutations in highly expressed genes. a,b, Schematic diagrams of the 
two tests for the expression-dependent cytotoxicity of molecular errors. a, The correlation between the probability of molecular error (x axis) and selective 
coefficient (y axis) should be more negative when the gene is highly expressed (driven by PTDH3, coloured red) compared to when it is lowly expressed 
(driven by PaGP1, coloured blue). b, Mutations with higher probabilities of molecular errors (x axis) should be under greater functional constraint (y axis)  
as estimated by the fraction of deleterious mutations. c,d, assessing the misfolding avoidance hypothesis by the two tests using Pmisfold (Methods).  
c, Distribution of all single-nucleotide mutations in GFP driven by PTDH3 or PaGP was indicated by contour lines, with darker lines representing higher density. 
The linear regression using the raw data points is presented as a dashed line and the Spearman’s rank correlation coefficient ρ and corresponding P values 
are also indicated. d, The lower half shows the estimated functional constraints for mutations within different ranges of Pmisfold for PTDH3-driven GFP (red) 
and PaGP1-driven GFP (blue), with standard errors assessed by bootstrapping the mutation 1,000 times. The PTDH3 versus PaGP1 difference within each group 
was shown as ratio in the upper half panel and tested by Mann–Whitney U-test (*P < 0.05, **P < 10−3 or ***P < 10−5). e,f, assessing the misinteraction 
avoidance hypothesis by the two tests in using the length of the IDr (Methods). These panels are, respectively, similar to c and d, except that we used the 
mean and standard error of the fitness effects for each unique x value, which are too discrete for contour plot. The Spearman’s rank correlation coefficient 
ρ and the corresponding P values obtained using the mean fitness effects are indicated. g,h, assessing the mrna folding requirement hypothesis by the 
two tests using MFE (Methods). These two panels are, respectively, similar to c and d. These panels shown result from GFP mutants growing in YPD. 
results from other conditions are in Extended Data Fig. 4.
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probability that a random mutation will increase the propensity of 
a certain type of stochastic molecular error. Taking misfolding as an 
example, the misfolding avoidance model predicts that CDS regions 
that are mutationally more sensitive to protein misfolding should 
be more functionally constrained. We therefore estimated a score of 
mutational sensitivity to protein misfolding for each codon within 
the CDS on the basis of the number of single-nucleotide mutations 
in the focal codon that give rise to a higher probability of misfolding 
(Fig. 5b, the second row on the right). Additionally, we calculated 

a functional constraint score for each codon, which was defined as 
the fraction of deleterious single-nucleotide mutations in the focal 
codon, because the greater the number of deleterious mutations 
found in a codon, the more likely it is to be functionally constrained 
(Fig. 5b, the first row on the right). We then examined the segment 
of GFP with a certain level of functional constraint (Fig. 5b, grey 
bars in the left panel) and checked their average mutational sensitiv-
ity to protein misfolding (Fig. 5b, red lines in the left panel). Similar 
calculations were performed for misinteraction avoidance and 
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Fig. 5 | Relative contribution of different types of molecular errors. a, a single linear model was regressed against the fitness effects of all 
single-nucleotide mutations in PTDH3-GFP using normalized (Z-transformation) Pmisfold (red), IDr (blue) and MFE (yellow) as the explanatory variables. 
The estimated coefficient (height of the bar) as well as its standard error (error bar) for each explanatory variable are shown for all measured fitness 
landscapes (x axis). b, For each amino acid in GFP, the strength of the functional constraint (grey bar in the left panel) was compared to the mutational 
sensitivity (coloured lines in the left panel) according to misfolding avoidance (red), misinteraction avoidance (blue) or the mrna folding requirement 
(yellow). For each type of value shown in the left panel, one pair of examples showing high and low values is listed on the right, where the x axis indicates 
the genotype (mutants represented with squares and the wild type with triangles) and the y axis indicates either the fitness effect or the proxy of 
molecular errors. c, The average mutational sensitivity (y axis) for misfolding avoidance (red), misinteraction avoidance (blue) or the mrna folding 
requirement (yellow) was calculated for all amino acids within GFP with the strength of the functional constraint exceeding a certain threshold (x axis). 
Error bar represents the standard error.
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the mRNA folding requirement (blue and yellow lines in Fig. 5b,  
respectively). Consistent with the above observations, these analy-
ses again highlighted the importance of protein misfolding, as it 
always displayed higher mutational sensitivity than the other two 
models (Fig. 5c). Furthermore, this result was recapitulated using 
PTDH3-URA3 libraries from YPD, SC and SC-URA media (Extended 
Data Fig. 5). In conclusion, although at least a few types of molecu-
lar stochastic errors contribute to the expression dependency of the 
fitness effects of CDS mutations, protein misfolding is probably the 
single most important one among the examined errors.

Discussion
Using an effective experimental pipeline, we measured the local 
fitness landscape of a protein-coding gene driven by two different 
promoters whose activities differed by about tenfold. Comparison 
between the high-expression and low-expression fitness land-
scapes suggested the expression dependency of the fitness effects of 
single-nucleotide mutations. We obtained direct support for several 
models of the molecular mechanisms underlying such expression 
dependency, which can be overarchingly summarized as avoidance 
of stochastic molecular errors. The relative contributions of differ-
ent types of stochastic errors to the deleterious effects of CDS muta-
tions were also examined, revealing a dominant contribution of the 
avoidance of protein misfolding. In summary, we have explained 
with high resolution how gene expression affects the fitness effect of 
individual CDS mutations.

Investigations of the evolutionary rate of protein-coding genes 
have resulted in the molecular clock hypothesis35 and the neutral 
theory36, which are both cornerstones in the fields of molecular 
evolution and comparative genomics. In the genomic era, gene 
expression has been revealed as a major determinant of the evo-
lutionary rate of protein12, yet the underlying molecular mecha-
nisms remain elusive, as multiple related hypotheses have been 
proposed but only indirect support for these hypotheses has been 
derived from the comparison of different genes21–23,31. Our study 
offers direct evidence that the functional constraint imposed by 
the stochastic error caused by a given mutation in a given gene 
are stronger when the gene is highly expressed than when it is  
lowly expressed. Nevertheless, we want to stress that, according  
to an ANOVA analysis based on the linear models fitted for the  
fitness landscapes of PTDH3-driven genes (Fig. 5a), all three 
hypotheses examined can only explain a small fraction (<6%) of  
variation in the fitness effects of the measured mutants 
(Supplementary Table 5). In other words, even though the three 
hypotheses found support from our experimental data, the vast 
majority of the variations in mutational fitness effects remained 
unexplained, either because of the poor measurement/predic-
tion accuracies of molecular errors or existence of additional 
unknown biological factors.

Besides the ER-anticorrelation, the effect of gene expression 
level on the organismal fitness has recently been investigated in 
other contexts. Most notably, ~100 yeast genes were expressed at 
~100 distinct expression levels and assayed for the resulting fitness 
effects in yeast29. As a result, it was revealed that the native expres-
sion level is sometimes non-optimal in terms of fitness. When the 
native expression is below the optimal level (as shown for URA3 
libraries in SC and SC-URA media), the protein sequence evolu-
tion might favour functional enhancement rather than avoidance of 
molecular error. Moreover, how gene expressions shift and switch 
genetic interactions among mutations has also been studied13 for 
a functional domain of a protein. Although the functional impor-
tance of the mutated gene had not been taken into consideration, 
the observed expression dependency for genetic interactions was 
largely compatible with a protein folding-based mechanistic model, 
which is consistent with the dominating role of protein misfolding 
in stochastic molecular errors.

In addition to the theoretical value for understanding molecu-
lar evolution, the role of molecular stochastic errors in determining 
the fitness effect of mutations has important biomedical implica-
tions. Common sense dictates that functional constraint, which 
once violated should cause symptoms, should be related to the 
physiological function of a gene. However, our results suggest that 
functional constraint could also be a result of cytotoxicity caused by 
stochastic molecular errors. Such mutation-induced cytotoxicity is 
clearly distinct from gain-of-function mutations, as it does not rely 
on the existence of any specific cellular components but the prod-
uct of the gene itself, whereas gain-of-function mutations usually 
involve specific interaction partners. Our results therefore strongly 
support the suggestion that the cytotoxicity caused by stochastic 
molecular errors is a non-negligible factor in identifying/explaining 
disease-related mutations.

Methods
Construction of transformation acceptor strains. To measure the fitness effect 
of all single-nucleotide mutations of a protein-coding gene in a massively parallel 
manner, we had to collect a large number of transformants with mutated genes. To 
improve the efficiency of homologous recombination-based yeast transformation, 
we constructed four receptor strains. First, we amplified two expression cassettes, 
PTDH3-GFP-KanMX and PAGP1-GFP-KanMX, from GFP strains obtained from a 
previous study37 (Supplementary Table 6). These two cassettes were then integrated 
into the HO locus of strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) 
of S. cerevisiae38 via a standard transformation protocol39 to construct two GFP 
acceptor strains (Extended Data Fig. 1e). Specifically, the cells of strain BY4741 
were cultured at 30 °C in 5 ml of YPD (1% yeast extract, 2% peptone, 2% glucose) 
overnight until saturation. Then, the cells were diluted to an optical density OD660 
of 0.2 and grown for ~4 h until the OD660 reached 0.7. Thereafter, the culture was 
harvested by centrifugation at 2,000g for 5 min and competent cells were obtained 
using 0.1 M lithium acetate (LiAc, Sigma). Subsequently, 240 μl of polyethylene 
glycol (50% w/v, Sigma), 30 μl of LiAc (1 M), 30 μl of water, 10 μl of salmon sperm 
vector DNA (10 mg ml–1, Sigma), 5 µg of the DNA product of each cassette and 
50 μl of competent cells were added to a microcentrifuge tube, briefly vortexed 
and subjected to heat shock at 42 °C for 30 min. After washing once in water, the 
mixture was spread on YPD plates with kanamycin (Sigma) and cultured for 2–3 d. 
Transformants of individual colonies were selected and confirmed by PCR for the 
correct replacement of the HO locus. Specifically, a pair of primers targeting the 
flanking sequence of the HO locus was used to amplify the expression cassette from 
transformants. Then, the amplification product was subjected to Sanger sequencing 
using another pair of primers, one of which matched the sequence of the promoter 
(PTDH3 or PAGP1), while the other matched the sequence of the terminator, such that 
correct recombination could be verified (Supplementary Table 6).

The two GFP acceptor strains constructed as described above were then used 
in another round of transformation in which the CDS of GFP was replaced with 
the CDS of URA3 from the pGSKU plasmid40, thereby creating two URA3 acceptor 
strains (Extended Data Fig. 1f and Supplementary Table 6). Yeast transformation 
followed the same protocol described above except that SC-URA was used for 
screening the transformants.

Construction of variant libraries. We aimed to acquire variant libraries for 
protein-coding genes (GFP or URA3, driven by either the PAGP1 or PTDH3 promoter) 
with 100% coverage for all possible single-nucleotide mutations. For this purpose, 
we first divided the full CDS of the gene into non-overlapping regions of 50 bp in 
length. For each 50-bp region, we ordered chemically synthesized oligonucleotides 
corresponding to the 90-bp sequence centred on the focal 50-bp region from 
IDT (https://www.idtdna.com/). The oligonucleotides consisted of (in exact 
order) 20 invariant sites, 50 variable sites and 20 invariant sites. The synthesis of 
each variable site was performed by mixing 97% wild-type (the acceptor strain 
constructed above) nucleotides with 1% of each of the other three nucleotides  
(Fig. 1a). According to theoretical and previous empirical data6, it was expected 
that ~25% of the synthesized oligonucleotides were wild type, while 25% contained 
single-nucleotide mutations and the others contained multiple mutations. Thus, 
CDS mutations were introduced during the synthesis of variable regions and the 
invariable regions could be used as conventional PCR primers. A total of 15 and 
16 such mutant primers were synthesized to cover the CDSs of GFP (733 bp) and 
URA3 (804 bp), respectively (Extended Data Fig. 1a and Supplementary Table 6).

The synthesized mutant primer targeting each 50-bp region was individually 
concatenated with other flanking elements through two rounds of standard PCR 
and two rounds of fusion PCR (Fig. 1a, Supplementary Fig. 1b and Supplementary 
Table 6) performed as follows. First, PCR fragment 1 was amplified using a 
mutant primer and a terminator primer targeting the 3′ end of the GFP terminator 
(Extended Data Fig. 1b,c and Supplementary Table 6). Second, PCR fragment 2 
was amplified using a promoter primer targeting the 5′ end of the promoter and 
a fragment primer targeting the immediate upstream region of the focal 50-bp 

NaTuRE ECoLoGY & EvoLuTioN | VOL 6 | JanUarY 2022 | 103–115 | www.nature.com/natecolevol 111

https://www.idtdna.com/
http://www.nature.com/natecolevol


Articles NATuRE EcOlOgy & EvOluTiON

variable region (Extended Data Fig. 1b,d and Supplementary Table 6). Thereafter, 
the first round of fusion PCR was conducted using the promoter primer and a 
terminator primer linked with a 20-bp region of fully degenerated (randomized) 
nucleotides serving as a barcode (below) and a 20-bp region identical to the 5′ 
end of the marker gene LEU2. As a result, PCR fragment 1 and PCR fragment 
2 were fused into fusion PCR fragment 1. We then constructed a LEU2 marker 
with the LEU2 CDS (from yeast strain S288c; ref. 41) and the KanMX promoter 
and terminator, such that the sequence similarity with the corresponding region 
in acceptor strains was higher and the rate of transformation was therefore also 
higher. Finally, this LEU2 marker was fused with fusion PCR fragment 1 using 
the promoter primer and another primer targeting the 3′ end of LEU2, giving rise 
to fusion PCR fragment 2 (Supplementary Table 6). Collectively, the fusion PCR 
fragment 2 contained (in the following order, 5′ to 3′), the promoter of choice 
(PTDH3 or PAGP1), the wild-type CDS fragments upstream of the focal 50-bp region, 
the 50-bp mutated region, wild-type CDS fragments downstream of the focal 50-bp 
region, terminator, a 20-bp region of fully degenerated (randomized) nucleotides 
serving as a barcode (see also the next paragraph) and the LEU2 marker gene. 
Depending on the number of mutant primers, the above process was repeated 
for multiple rounds. That is, for each promoter, 15 different types of fusion PCR 
segment 2 were constructed for GFP and 16 different types of fusion PCR segment 
2 were constructed for URA3. All fusion PCR fragment 2 sequences of each gene 
driven by each promoter were combined to form a library (that is, a total of four 
libraries) that covered all single-nucleotide mutations of the gene.

Notably, the 20-bp barcode (Supplementary Table 6) incorporated into fusion 
PCR fragment 1 can be used as a genotype-specific barcode to facilitate massive 
genotype frequency estimation via high-throughput sequencing on Illumina 
platforms, whose sequencing length is too short to obtain the whole CDS. There 
are 420 ≈ 1012 possible sequence combinations for a 20-bp barcode, which is 50× the 
number of template DNA molecules used for PCR. To monitor possible template 
switching during PCR42,43, we included an additional 5-bp index to mark different 
fusion PCR fragments (Supplementary Table 6). To minimize the occurrence 
of template switching, we used high-fidelity DNA polymerase (AccuPrime Pfx, 
Invitrogen) according to the user manual and minimized the number of fusion 
PCR cycles (the first round of fusion PCR consisted of 20 cycles and the second 
round of fusion PCR consisted of 28 cycles). In addition, the LEU2 primer and 
the promoter primers contained the genomic upstream and downstream flanking 
sequences of HO in the acceptor strain so that fusion fragment 2 could be used for 
transformation (Extended Data Fig. 1b and Supplementary Table 6).

Another issue worthy of discussion here is the choice of promoter. We 
used only two promoters in our experiment, among which PTDH3 is one of the 
strongest promoters in the S. cerevisiae genome, whereas the activity of PAGP1 is 
approximately tenfold weaker27 (Extended Data Fig. 2a). This was a compromise 
between using strong promoters to ensure the penetrance of the mutational effect 
and achieving a large enough activity difference between the promoters to reveal 
expression dependency. The deleterious effect of stochastic molecular errors will 
most likely be undetectable if an even weaker promoter is used unless methods 
with higher sensitivity to fitness differences are applied. It might therefore be 
desirable to measure more fitness landscapes under a wider range of expression 
levels when more sensitive methods for massively parallel fitness measurements 
become available.

Construction of the variant strain pool. Using the yeast transformation 
procedure described above, the four variant libraries were integrated into the HO 
locus of the corresponding acceptor strain with the corresponding promoter and 
target gene to build four strain pools (Fig. 1b). Transformants were selected on 
leucine-free synthetic complete plates (SC-LEU) and cultured at 30 °C for 2.5 d. To 
obtain an average of >20 clones for each mutation type at each site of each gene 
with a certain promoter, we collected at least 200,000 clones from the selection 
medium for each strain pool. Because each homology arm in the acceptor strains 
was longer than 400 bp, the rate of homologous recombination increased to ~10−4 
(Extended Data Fig. 1g). We started the transformation with ~1010 cells, which 
made this step labour intensive. After washing the collected clones with YPD 
medium, 20-ml aliquots were stored in 30% sterile glycerol at −80 °C.

Competitive growth assay. We conducted competition experiments to estimate 
the fitness of different variants relative to that of the strain containing wild-type 
GFP or URA3 (Fig. 1c). To ensure the presence of all variants (especially those with 
single-nucleotide mutations) in the competition experiment, ~5 × 108 cells were 
used for downstream experiments, corresponding to an average of 2,500 cells per 
clone. Specifically, frozen samples of the variant strain pool were removed from 
−80 °C storage and placed at room temperature. For the GFP strains, samples 
were inoculated into 700 ml of YPD. For the URA3 strains, we inoculated samples 
into 400 ml of SC and 400 ml of SC-URA media. The YPD and SC media were 
chosen to ensure fast growth and therefore a relatively short competition time. 
The SC-URA medium was chosen so that the physiological function of URA3 
(orotidine 5-phosphate decarboxylase) would become essential for the strain, 
thereby allowing the assessment of the fitness effect of mutations dependent on 
the functional importance of the gene. Three biological replicates were assayed in 
parallel for all libraries, except that the PAGP1-URA3 libraries growing the SC and 

SC-URA media were only replicated twice. The strains were then cultivated at 
250 r.p.m. and 30 °C.

We used OD660 readings to estimate the concentration of cultured cells every 
8 h to monitor cellular growth so that the population remained in the exponential 
growth phase, thus ensuring continuous growth competition among different 
mutants. At the same time, we transferred ~1.5 × 108 cells (>15× the effective 
population size of yeast) to fresh medium44, thereby minimizing the potential 
influence of genetic drift45. In addition, we sampled the population in competition 
every 24 h by freezing aliquots in 30% glycerol at −80 °C. The competitive 
culture experiment lasted 7 d. Because the genome size of yeast is 1.2 × 107 bp, 
the single-nucleotide mutation rate is ~1.67 × 10−10 per base per generation46 and 
the growth rate in YPD medium is ~90 min per generation. Therefore, during 
the 7-d cultivation period, the number of point mutations was ~0.2 per genome. 
Yeast growth in SC/SC-URA medium (~135 min per generation) is slower than 
that in YPD; therefore, the number of point mutations should not exceed that in 
YPD. Thus, artifacts due to secondary mutations on other loci of the yeast genome 
should be negligible.

High-throughput sequencing. To determine the correspondence between the 
genotypes and barcodes in the variant strain pool, we used the PacBio Sequel 
platform (Nextomics Biosciences) to sequence the expression cassettes (Fig. 1c). 
First, phenol-chloroform and glass beads were used to extract genomic DNA47 
from aliquots of cells after melting. Specifically, ~1 × 108 cells (~500 cells per 
variant clone) were centrifuged at 4,000 r.p.m. in a 1.5-ml tube for 2 min and then 
rinsed three times with 1 ml of sterile deionized water. We then added 100 μl of 
acid-washed glass beads (0.5 mm, Sigma), 200 μl of cell lysis buffer (2% Trion 
X-100, 1% SDS, 0.1 M NaCl, 1% 100× Tris-EDTA buffer solution, Sigma) and 200 μl 
of DNA extraction solution (WEST GENE) to the tube, followed by 15 min of 
vortexing. After centrifugation at 13,500 r.p.m. for 5 min, 200 μl of the supernatant 
was transferred to a new 1.5-ml tube. Then, 1 ml of cold 100% ethanol was added, 
after which the contents of the tube were mixed thoroughly and centrifuged at 
13,500 r.p.m. for 2 min before the supernatant was discarded. The precipitate was 
treated with RNase cocktail enzyme (Invitrogen) at 37 °C for 1 h and 1 ml of cold 
100% ethanol was added, followed by mixing by inversion and centrifugation at 
13,500 r.p.m. for 2 min before the supernatant was discarded. After drying, the 
precipitate was added to 100 μl of sterile deionized water and stored at −20 °C and 
1 μg of genomic DNA was used for the following PCR, which corresponding to 
~300 copies of genomic DNA per variants. To minimize the introduction of base 
substitution errors and template switching during PCR, we used high-fidelity DNA 
polymerase and minimized the number of PCR thermal cycles. The number of 
cycles in the first round of PCR was 16 and the number of cycles in the second 
round of PCR was 13. The purified PCR product from each variant strain pool 
was sequenced in three PacBio Sequel or Sequel II SMRT Cells. To evaluate the 
accuracy of PacBio Sequel sequencing, we also performed Sanger sequencing on 
>100 randomly selected clones (Fig. 1c) and the results were compared with the 
PacBio-CCS results (Supplementary Table 1).

We also sequenced the barcode region using the Illumina HiSeq platform to 
estimate the change in genotype frequency before and after competition (Fig. 1c). 
The DNA extraction and PCR procedures were the same as sample preparation 
procedures for the PacBio Sequel platform, except that after the region between 
HO and the LEU2 upstream flanking region was PCR amplified, only the barcode 
region was amplified by PCR (Fig. 1c and Supplementary Table 6). For each variant 
strain pool, two technical repeat experiments were performed on the sample from 
day 0, and one experiment was performed on each of the three biological replicates 
from day 3 and day 7. We ultimately used the data from day 7 in the downstream 
analyses because a longer cultivation time gave rise to a better resolution for fitness.

Mapping barcodes to variant genotypes based on PacBio Sequel results. We 
obtained raw CCS reads from the PacBio Sequel platform (Supplementary Table 1). 
Because the single-stranded DNA molecules of different alleles in the same library 
were highly similar, they could form heteroduplexes and cause base detection 
errors, thereby increasing the misreading of mutations. To avoid this problem, we 
used BLASR (ref. 48) to map all the raw CCS reads to the wild-type sequence of the 
gene and divided them into positive-strand and negative-strand reads. Then, we 
separately called the consensus sequences (HiFi reads) from the positive strand 
and the negative strand. To further reduce the error rate in base detection, we also 
required that each HiFi read be generated from at least five raw CCS reads (number 
of passes ≥5). Finally, we extracted the genotype and the barcode from each HiFi 
read without any insertion or deletion. Only barcodes supported by at least two 
HiFi reads were considered. If one barcode was paired with multiple genotypes, we 
used the genotype that was supported by the majority (>50%) of the reads of the 
barcode; if no genotype reached majority, the barcode was discarded. Finally, we 
obtained 669,526, 632,997, 547,952 and 552,530 barcode–genotype pairs for the 
PTDH3-GFP, PAGP1-GFP, PTDH3-URA3 and PAGP1-URA3 libraries, respectively, which 
contained 99.27, 97.54, 99.00 and 98.92% of all single-nucleotide mutations in the 
corresponding gene (Supplementary Table 1).

We would like to further emphasize that accurate fitness estimation for all 
CDS mutations was critically dependent on a reliable correspondence between 
the genotype and barcode. We strove to reduce related artifacts by using relatively 
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long barcodes and PCR reagents/conditions with high fidelity, minimizing the 
number of PCR cycles (to avoid template switching) and performing sequencing 
via the highly accurate PacBio-CCS approach. As a result, the erroneous 
correspondence between genotype and barcode appeared negligible according to 
the Sanger-sequenced mutants (Supplementary Table 1). In the future application 
of similar experimental procedures, case-by-case optimized conditions for such 
correct genotype-to-barcode mapping should be carefully designed.

Estimation of the relative fitness of genotypes by HiSeq sequencing. We 
sequenced the barcode region via 150-bp paired-end sequencing on the Illumina 
HiSeq platform (Supplementary Table 6). We required that the barcodes sequenced 
from both ends be totally consistent with each other without any mismatches. 
The extracted barcodes were then mapped to their corresponding genotypes. 
Because the number of reads for wild-type barcodes affects the fitness estimation 
of all variants and its accuracy is thus of particular importance, we calculated 
the changes in frequency for each wild-type barcodes that have at least 100 reads 
at day 0 and at least five reads at day 7 (that is, ratio between frequency at day 7 
and frequency at day 0 or day 7/day 0 ratio). Then the barcodes whose day 7/day 0 
ratios deviated more than one standard error from the average day 7/day 0 ratios 
were discarded. In estimating the selective coefficient, the number of reads for 
all barcodes mapped to the same genotype were combined. We also required that 
the total number of reads for a variant be at least 100 at day 0 to ensure accuracy/
resolution of fitness estimation. The Wrightian fitness (marked as w) of a specific 
genotype relative to the wild type could then be calculated as follows:

w =

( ft/f0
Ft/F0

) 1
g

(1)

Here, ft is the frequency (number of reads) of the genotype in a culture 
environment after a time period of t in the competitive culture; f0 is the 
frequency of genotypes on day 0 of (that is, before) competitive culture; Ft 
and F0 are the ft and f0 of the wild-type CDS, respectively; g is the number of 
generations of cell growth during this time period (t) estimated from the OD660 
obtained at each passage, measured every 8 h during competition, according to 
g = log2

(

OD660 × 107 × v/n
)

, where v is the culture volume in litres (0.7 for YPD 
and 0.4 for SC/SC-URA) and n is the number of cells transferred at the last passage. 
Finally, all genotypes with fitness values <0.5 were discarded. For experiments 
in YPD or SC media, the exclusion of these genotypes should not substantially 
alter our conclusion because they constitute only <5% of all single-nucleotide 
mutations. As for URA3 mutants growing in SC-URA, there are <300 genotypes 
with fitness <0.5, which is presumably caused by lack of functional URA3 protein 
and therefore should not alter our implication about stochastic molecular errors.

We conducted two to three biological replicates for each competitive growth 
assay. Read/genotype frequencies at time t from these replicates can be used 
separately for fitness estimates via equation (1), giving rise to two to three 
replicate-separated fitness estimates for a single mutant that can be used to gauge 
the measurement errors (for example, Fig. 3). When one single fitness estimate 
was required for each mutant (for example, Figs. 2, 4 and 5), we followed a 
previous study6 to pool all the reads from all replicates and used the resulting 
read counts as Ft and ft. With minimal variation in g in equation (1) (number of 
generations, of which the difference between the largest and smallest never exceeds 
1 among biological replicates of each competitive growth assay), the mathematical 
relationship between the pooled and replicate-separated fitness estimates can be 
shown by

wg
=

ft/f0
Ft/F0

=

r
∑

i=1

( Fti
Ft

×

fti /f0
Fti /F0

)

=

r
∑

i=1

( Fti
Ft

× wg
i

)

(2)

Here, r is the number of replicates and i is the index for individual replicates. 
In other words, the pooled fitness estimate is a weighted average of the 
replicate-separated fitness estimates. The weight of replicate-separated fitness 
(Fti /Ft) is essentially the confidence level of the fitness estimate because an 
experiment in which the frequency of wild type is lower should have larger error in 
fitness estimation and therefore should be given lower weight when averaging.

We then sought to assess the accuracy of our fitness estimates. The fitness 
estimates generally have low coefficient of variation among replicates of the same 
variant that is comparable to previously reported fitness landscape6 (Extended 
Data Fig. 2c). The between-replicate correlations of mutational fitness effects 
were high (Pearson’s R > 0.6) for the majority (Extended Data Fig. 2d,e) but 
low for some other samples (Supplementary Table 3), which was suspected to 
be caused by large measurement errors of mutations with small fitness effect. 
Indeed, the between-replicate correlations of fitness were much stronger 
when only the mutations with absolute fitness effect >1% were considered 
(Supplementary Table 3). The fitness estimates derived for day 3 were highly 
consistent with that for day 7 (Extended Data Fig. 2f), the latter of which will be 
used across this study. We mapped the fitness landscape of PTDH3-URA3 measured 
in the SC-URA medium onto the three-dimensional structure of the orotidine 
5-phosphate decarboxylase (the protein encoded by URA3) and found a region 
enriched with deleterious mutations and corresponding to the activity centre 

of the protein28 (Extended Data Fig. 2g). We also compared the distribution of 
fitness effects between non-synonymous and synonymous mutations (Fig. 2i–p) 
and found that the difference between the two distributions was stronger when 
the mutated gene was functionally required (Fig. 2m–p, URA3 in media with 
slight or complete shortage of uracil), relative to when it was not (Fig. 2i–l, GFP 
or URA3 in YPD medium, a rich medium in which uracil is not a limiting factor 
for yeast growth). Furthermore, the average fitness effects of single synonymous 
mutations were closest to 0, whereas that of single missense mutations, 
multiple missense mutations and nonsense mutations were, in this exact order, 
increasingly more deleterious (Extended Data Fig. 2h). In addition, the growth 
curve of ten least-fit and ten fittest genotypes from the PTDH3-GFP library growing 
in YPD individually measured by a spectrophotometer suggested that all but 
two genotypes displayed a doubling time consistent with their fitness estimates 
(Extended Data Fig. 2i). Collectively, these results offered general support for the 
reliability of the fitness estimates.

We would also like to note here that our experimental protocol combining 
Illumina sequencing and PacBio-CCS presents several advantages in determining 
the fitness landscapes of the whole CDSs of protein-coding genes. First, 
PacBio-CCS is not only more accurate than Illumina sequencing but can also be 
applied to much longer sequences and is therefore more reliable for determining 
the variant sequences of protein-coding genes, whose length dictates that each 
variant should be rare in the whole library. Second, the targeted sequencing of the 
barcode instead of the CDS region avoided the weakness regarding sequencing 
length on the Illumina platform and made use of its strength of a high throughput 
in terms of the number of reads. Thus, our method took advantage of the strengths 
of both techniques and represents an improvement over the state-of-the-art 
method for the deep mutational scanning of a whole protein-coding gene5.

RT–qPCR for promoter activities. We used quantitative PCR with reverse 
transcription (RT–qPCR) to assess the activities of PAGP1 and PURA3 in YPD, SC and 
SC-URA media. Two clones of S288c respectively cultured in the three media were 
harvested during log-phase growth and RNA was extracted with RNeasy Mini Kit 
(Qiagen) according to the manufacturer’s instructions. Then, 1 µg of total RNA was 
reverse transcribed to complementary DNA using the PrimeScript RT reagent Kit 
with gDNA Eraser (TAKARA) according to the manufacturer’s instructions. Gene 
expression was assayed in triplicates by RT–qPCR, amplified using iTaq Universal 
SYBR Green Supermix (Bio-Rad) on a LightCycler 96 Real-Time PCR System 
(Roche). RT–qPCR primers (Supplementary Table 4) were designed by NCBI 
Primer BLAST. The cycling parameters for amplification were 95 °C for 30 s and  
40 cycles of 95 °C for 5 s and 60 °C for 30 s.

Protein expression level by flow cytometry. The protein expression level driven 
by the PTDH3 or PAGP1 was estimated by flow cytometry of the respective GFP 
acceptor strain. We cultured cells (three biological replicates each strain) in YPD 
medium at 30 °C and 250 r.p.m. overnight. The saturated culture was then diluted 
to OD660 = 0.2 in 4 ml of YPD and growth continued at 30 °C for 4 h to reach 
exponential growth phase. Each promoter has three biological replicates and three 
technological repeats (3 × 3). Equal numbers of cells (10,000 cells) were collected 
by Attune N×T flow cytometer (Life Technologies) with a 533/30 nm optical filter 
from each sample to measure the abundance of GFP protein.

Doubling time measurement for individual genotypes. The PTDH3-GFP single 
mutants with top ten and bottom ten measured fitness in YPD medium were 
selected and individually measured by a spectrophotometer to verify the accuracy 
of competition-based fitness. Briefly, the selected single mutants were individually 
constructed by the same method as described in sections Construction of the 
variant libraries and Construction of the variant strain pool above, except that the 
mutation primer was replaced by a regular primer carrying the specific mutation. 
Cells were cultured in YPD at 30 °C and 250 r.p.m. overnight and then diluted to 
OD = 0.1~0.2 and transferred to 96-well plates. Growth was monitored on Epoch2 
microplate reader (BioTek) at 30 °C for 12 h by measuring absorbance (OD600) 
every 10 min. The doubling time (DT) was calculated by contrasting the starting 
and ending OD of each of these 10-min periods via the following equation49

DT =
ln(2)

(

ln(OD2)−ln(OD1)
t2−t1

)

Here OD1 and OD2 are, respectively, the starting and ending OD of the 10-min 
period. All estimated DTs for the growth range 0.2 < OD < 0.6 are averaged and 
used as the DT estimate of a specific well. Three biological replicates each with 
three technological repeats (3 × 3) were measured per variant. A wild-type strain 
was included for each plate to control batch effect. The relative doubling time 
(Extended Data Fig. 2i) of a variant is the mean doubling time among all repeats  
(3 × 3) minus the doubling time of wild type.

Extrapolation of the fitness effect of single-nucleotide mutations by linear 
models. To extrapolate the expression effect on the fitness consequence of 
single-nucleotide mutations, we fit two lineage models (expression-dominant 
models, y = ax and mixed models, y = ax + b) towards the observed data of each 
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single-nucleotide mutation. Here, x represents the protein abundance and equals 
to 21,148 for low expression (driven by PAGP1) and 168,876 for high expression 
(driven by PTDH3)27. And y represents the fitness effect for each individual biological 
replicate of the focal mutation. In other words, the mixed models assumed an 
intrinsic fitness consequence (the ‘b’ term) of the mutation that is independent 
of the expression, whereas the expression-dominant models assumed no such 
expression-independent component. The intercept or slope with P <0.05 was 
considered significant in the fitted models.

Genomic and comparative genomic data. For the assessment of mistranslation, 
the tRNA gene copy number in the S. cerevisiae genome was downloaded from the 
Genomic tRNA Database50. To calculate tAI on the basis of the tRNA gene copy 
number, we first calculated the absolute adaptiveness value Wi for each codon i:

Wi =

ni
∑

j=1
(1 − Sij)tGCNij ,

where ni is the number of tRNA isoacceptors that recognize codon i, tGCNij is 
the gene copy number of tRNA j that recognizes the ith codon and sij is a selective 
constraint on the efficiency of the codon–anticodon coupling. The sij values for 
eukaryotes were used as indicated in a previous study51. Then, we calculated the tAI 
of a codon as Wi/Wmax, where Wmax is the maximum Wi value.

For the assessment of protein misfolding, we estimated the misfolding 
probability of a mutant relative to that of the wild-type CDS following our 
previously published method21. Briefly, I-Mutant 2.0 was used to predict the 
changes in free energy (ΔΔG) resulting from amino acid substitutions33 on the basis 
of three-dimensional protein structure models downloaded from PDB (ref. 52) (PDB 
ID is 1GFL for GFP (ref.53) and 3GDL for URA3; ref. 54). The relative misfolding 
probability of a mutant compared to that of the wild-type CDS was then calculated 
as follows

Pmisfold =

q′ +
∑

i

[

h′i e
−

ΔΔG′i
kT

]

q +
∑

i

[

hie−
ΔΔGi
kT

] e−
(

ΔΔG
kT

)

Here, ΔΔGi and ΔΔG′

i  are the increases in the unfolding energy caused 
by the ith translational error in the wild-type and mutant CDSs, respectively. 
The parameter ΔΔGmt is the increase in unfolding energy caused by an amino 
acid mutation in the wild-type CDS. In addition, q and q′ are the probabilities 
that a wild-type and a mutant protein molecule contain no translational errors, 
respectively. Parameters hi and h′i  are the probabilities of the ith possible 
translational error in the wild-type and mutant proteins, respectively. Both q/q′ and 
hi/h′i  were calculated from the previously estimated probability of mistranslation21.

For the assessment of protein misinteraction, we used two proxies to estimate 
the probability of protein misinteraction: the hydrophobicity of surface residues 
and the IDR. We first used DSSP (ref. 55) to calculate the solvent accessibility for 
each amino acid on the basis of the aforementioned protein structure models 
downloaded from PDB, which was then transformed to the relative solvent 
accessibility by dividing accessibility value by the surface area of the amino acid56. 
The level of hydrophobicity of each amino acid was retrieved from a previous 
publication57. We used GlobPlot2 (ref. 58) (command-line parameter ‘GlobPlot.
py 10 15 74 4 5’) to predict the IDRs. For the assessment of mRNA folding 
requirement, we used RNAfold to predict MFE of mRNA59.

The above choice of proxies for various types of stochastic molecular errors is 
certainly worthy of discussion. In particular, although they individually appeared 
informative in distinguishing strongly error-prone mutations from other mutations 
in a highly expressed gene (Fig. 4), their difference in quantitative accuracy might 
severely hinder our assessment for the relative importance of the three hypotheses. 
It is possible that our conclusion of the superiority of misfolding relative to 
misinteraction and mRNA folding requirement (Fig. 5) is due to the higher 
prediction accuracy for misfolding. Nevertheless, from previous benchmarking of 
these methods, their accuracy appeared comparable33,60,61, such that the reversion of 
the superiority of misfolding is unlikely, albeit not impossible.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw data from high-throughput sequencing were deposited to NCBI BioProjects 
under accession number PRJNA681990.

Code availability
Custom R and python codes were used in data analysis, which are available on 
Github (https://github.com/woson2020/Experror).
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Extended Data Fig. 1 | additional information on the experimental pipeline. (a) The CDS of the gene (GFP or URA3) was divided into non-overlapping 
regions of 50 bp. For each 50-bp region, one mutant primer was synthesized with the focal 50-bp region by using doped nucleotides (therefore introducing 
mutations) and a 20-bp invariable sequence flanking either side of the 50-bp region; see also Fig. 1a, Methods and Supplementary Table 6. (b) Different 
mutant primers were used in combination with the terminator primer to amplify PCr fragment 1 and in combination with the promoter primer to amplify 
PCr fragment 2. Then, PCr fragments 1 and 2 were fused using promoter primers and barcode (+ index) primers, giving rise to fusion PCr fragment 
1, which was further fused with the LEU2 marker. The final product, fusion PCr fragment 2, was ready for recombination; see also Fig. 1a, Methods and 
Supplementary Table 6. (c and d) Electrophoresis results for PCr fragment 1 (c) and PCr fragment 2 (d) of GFP. (e and f) Construction of the acceptor 
strain. The HO locus in S. cerevisiae strain BY4741 (MaTa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was individually replaced by two expression cassettes, 
PTDH3-GFP-KanMX and PADP1-GFP-KanMX, via homologous recombination to construct two GFP acceptor strains (e). The two URA3 acceptor strains were 
constructed by replacing the CDS of GFP in the GFP acceptor strains via homologous recombination (f). (g) Typical transformation results on plates 
selective for transformants, showing a relatively high transformation rate. (h) Histogram of between-sample correlations of genotype frequencies. The 
correlations were stratified as correlations between samples from the same timepoint (that is, biological replicates) (red) or different timepoints (green).
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Extended Data Fig. 2 | The measured fitness landscape is overall accurate. (a) Protein expression levels driven by the two promoters of PTDH3 and PaGP1 
assayed by flow cytometry using the corresponding GFP acceptor strains. The error bar represents standard deviation from 9 replicates (3 biological × 
3 technological). (b) Distribution of reads ratio (Day7/Day0) of wild-type barcodes in four mutant libraries. Only wild-type barcodes whose reads ratios 
were no more than one standard deviation away from their average (black bars) were pooled and used for the estimation of read ratio of wild-type. (c) 
Coefficient of variation (CV) of fitness among biological replicates was calculated for each genotype, and collectively shown as a standard boxplot for 
all genotypes within a library. as comparison, similar estimates were shown for the previously reported fitness landscape of a trna gene. (d and e) 
Comparison of fitness of PTDH3-GFP variants growing in YPD on day 7 among biological replicates. Pearson’s correlation coefficients and the corresponding 
P values are shown. Correlations of other libraries were listed in Supplementary Table 3. (f) Correlation of fitness estimates from day 3 and day 7, and 
that among different growth media. The Pearson’s correlation coefficients are shown by colours indicated by the colour scale bar. (g) Enrichment of 
deleterious mutations in activity centre of Ura3. The fitness of each amino acid was calculated by the average fitness of all single mutants of the 
corresponding codon. The labelled amino acid are four known active site and the dashed ellipse outlines the activity centre of Ura3. (h) Distributions 
of fitness for four types of mutants are shown as boxplots for each library. The four types of mutants are categorized as follows: synonymous (having 
one or more synonymous mutations), single missense (having one missense mutations, additional synonymous mutations allowed), multiple missense 
(having two or more missense mutations, additional synonymous mutations allowed), nonsense (having at least one nonsense mutations, additional 
missense or synonymous mutations allowed). Statistical significance of differences by Mann–Whitney U-test were indicated by asterisks: *: P < 0.05; 
**: P < 0.001; n.s.: not significant. (i) Ten least-fit and ten fittest genotypes picked from the PTDH3-GFP library growing in YPD were individually measured 
by a spectrophotometer for their doubling time, which was further subtracted by the doubling time of wild-type and thereby plotted as relative doubling 
time (y axis). The relative doubling time of each genotype was tested for significant deviation from 0 by Mann–Whitney U-test using the three biological 
replicates, giving rise to filled circles for significant genotypes or empty circles for insignificant genotypes.
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Extended Data Fig. 3 | Extrapolation of the expression-dependent and independent components of the fitness effect of CDS mutations. (a) Two types 
of linear models were regressed for the fitness effect of each single-nucleotide mutation (y axis) using the expression levels of PTDH3 and PaGP1. In the 
‘expression-dominant’ model, no expression-independent components were assumed, whereas the ‘mixed’ model contained both expression-dependent 
and expression-independent components. (b) The quality of the expression-dominant and mixed models in describing the data were assessed according 
to the akaike information criterion (aIC). The number of mutations better described by the mixed model (blue bar) was always higher than the number 
better described by the expression-dominant model (red bar), regardless of the fitness landscapes (y axis) used. Binomial P values against the null 
expectation of equal preference for both models are indicated as **: P < 10−3; ***: P < 10−5. (c and d) The relative (to ACT1) activities of different promoters 
in yeast strain S288c growing in different media were measured by rT–qPCr of expression levels of corresponding native genes (c). The response of 
each promoter to uracil shortage was calculated as the ratio between its activity in SC/SC-Ura and that in YPD (d). In both panels c and d, error bar 
represents the standard deviation of six replicates, and P values from Mann–Whitney U-tests are indicated as *: P < 0.05. (e) a simple model explaining 
why a functionally required gene is more sensitive to deleterious mutations when it is lowly expressed compared to when it is highly expressed. The green 
curve represents the relationship between expression level of the gene (e, on x axis) and organismal fitness (w, on y axis). assuming diminishing return, 
that is, dw/de = f (e) and f is a monotonic decreasing function. The dark, medium and light blue vertical lines represent optimal, slight shortage and severe 
shortage of gene expression, respectively. a deleterious mutation should trigger a small loss of function of the gene that is effectively equivalent to a small 
reduction of expression (Δe, the two grey segments), which shall lead to a corresponding reduction in fitness (Δw, the red or pink segments). apparently, 
the same Δe should give rise to smaller Δw when e is higher at ‘slight shortage’ (the pink segment) compared to when e is lower at ‘severe shortage’ (the 
red segment), because Δw/Δe = f (e) is smaller for larger e due to diminishing return. This relationship is also intuitively shown in the figure.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | additional tests on the error avoidance models. (a and b) These panels are similar to Fig. 4e, f except that the trna adaptation 
index (taI) was used as a proxy to test the mistranslation avoidance hypothesis. (c and d) These panels are similar to Fig. 4c and d except that the 
mutation-triggered increment of hydrophobicity was multiplied by the relative solvent accessibility (rSa) as a proxy for the probability of misinteraction so 
that the misinteraction avoidance hypothesis could be tested. note that only the amino acids at the protein surface (rSa > 0.4) were considered. altering 
the rSa criteria for the protein surface would not change the conclusion (data not shown). (e-j) These panels are similar to Fig. 4c, e, g, d, f, h except 
that the fitness landscape of URA3 in YPD was used. These results were largely consistent with those presented in Fig. 4c–h, except for the functional 
constraints for misinteraction (i). For the mutations within the 75-100% quantile of Pmisfold, we suspected that the fraction of misfolded Ura3 was too high, 
making the number of correctly folded Ura3 molecules insufficient when gene expression was driven by PaGP1 compared to when it was driven by PTDH3.  
(k-m) These panels are similar to Fig. 4c, e, g except that the fitness landscape of URA3 in SC was used. (n-p) These panels are similar to Fig. 4c, e, g 
except that the fitness landscape of URA3 in SC-Ura was used.
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Extended Data Fig. 5 | Relative contribution of different error avoidance models in other fitness landscapes. (a-c) These panels are similar to Fig. 5c 
except that other measured fitness landscapes, as indicated on top of each panel, were used to estimate the relative contribution of misfolding avoidance 
(red), misinteraction avoidance (blue) and the mrna folding requirement (green).
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