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ABSTRACT 

 

Though sequence differences between alleles are often limited to a few 

polymorphisms, these differences can cause large and widespread allelic variation 

at the expression level. Such allele-specific expression (ASE) has been extensively 

explored at the level of transcription but not translation. Here we measured ASE in 

the diploid yeast Candida albicans at both the transcriptional and translational 

levels using RNA-seq and ribosome profiling, respectively. Since C. albicans is an 

obligate diploid, our analysis isolates ASE arising from cis elements in a natural, 

non-hybrid organism, where allelic effects reflect evolutionary forces. Importantly, 

we find that ASE arising from translation is of a similar magnitude as transcriptional 

ASE, both in terms of the number of genes affected and the magnitude of the bias. 

We further observe coordination between ASE at the levels of transcription and 

translation for single genes. Specifically, reinforcing relationships—where 

transcription and translation favor the same allele—are more frequent than 

expected by chance, consistent with selective pressure tuning ASE at multiple 

regulatory steps. Finally, we parameterize alleles based on a range of properties and 

find that SNP location and predicted mRNA-structure stability are associated with 

translational ASE in cis. Since this analysis probes more than 4,000 allelic pairs 

spanning a broad range of variations, our data provide a genome-wide view into the 

relative impacts of cis elements that regulate translation. 
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INTRODUCTION 

 

 Translation plays a pivotal role in determining levels of gene expression. In 

prokaryotes, ribosomes alone comprise nearly 25% of cellular mass (Bremer and 

Dennis), and in rapidly growing yeast 60% of total gene expression is devoted to the 

synthesis of ribosomes (Warner 1999). An intricate network of trans-acting factors 

and cis-regulatory elements ensure that mRNAs are translated into proteins at the 

appropriate rate, location, and time (Preiss and Hentze 1999; Gebauer and Hentze 

2004). Improper translation is linked to a variety of pathologies; for instance, 

mutations in trans regulators are linked to cancer (Stumpf and Ruggero 2011), and 

ribosomal-subunit haploinsufficiencies cause inherited anemias or specific loss of 

the spleen (Bolze et al. 2013). 

A variety of cis elements embedded in mRNA sequences affect translation, 

and mutations in these sequences can cause disease (Barbosa et al. 2013; Jacobson 

et al. 2005). It is known that the Kozak sequence, upstream open reading frames 

(uORFs) in untranslated regions (UTRs), and mRNA tertiary structure all affect 

translational efficiency (Preiss and Hentze 1999; Gebauer and Hentze 2004; Gingold 

and Pilpel 2011). As expected, point mutations disrupting these features impact 

gene expression and consequently can result in a pathological phenotype. For 

example, a SNP in the 5’ UTR of MYC perturbs the structure of an internal ribosome 

entry site and leads to higher translational efficiency, which is associated with an 

increased likelihood of developing multiple myeloma (Stumpf and Ruggero 2011; 

Cunningham et al. 2013; Hsieh et al. 2012). 

 Until very recently, there have only been a few systems-level studies that 

have investigated how cis elements of mRNA affect translation, but they share in 

common two key features: a large panel of incrementally variant mRNAs and a 

quantitative assay to detect translational differences. For example, Plotkin and 

colleagues engineered a panel of 154 synonymous mRNA variants—each encoding a 

single GFP polypeptide—and used quantitative fluorescence measurements to 

assess translation, finding that mRNAs with high folding stability near the 5’ end 

tend to have lower translational efficiency (Kudla et al. 2009). Pursuing a very 
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different strategy, Kruglyak and colleagues exploited the natural variation between 

alleles of 643 budding-yeast genes and quantitatively measured protein abundance 

using large-scale liquid chromatography-mass spectrometry, enabling dissection of 

the relative contributions of cis elements and trans regulators to expression levels 

(Khan et al. 2012). Such quantitative measurements of allele-specific expression 

(ASE) have the ability to reveal novel and general features of translational control as 

shown recently in (Artieri and Fraser 2014; McManus et al. 2014), but thus far they 

have largely been applied to transcriptional studies (Pastinen 2010; Pickrell et al. 

2010; Montgomery et al. 2010; Ge et al. 2009; Lefebvre et al. 2012).  

 Here we advance our understanding of the cis regulation of translation: our 

panel of variant mRNAs comprises the allelic pairs of the entire Candida albicans 

genome, and our quantitative assay for translation is ribosome profiling (Ingolia et 

al. 2009; Brar et al. 2011). We chose C. albicans as a model for several reasons. First, 

the pathogenic budding yeast exists almost exclusively in a diploid state (Hickman 

et al. 2013); thus, unlike hybrid organisms used in other recent translational ASE 

studies (Artieri and Fraser 2014; McManus et al. 2014), the alleles in C. albicans will 

have evolved physiologically relevant interactions at the transcriptional and 

translational levels. Second, we recently assembled a completely phased diploid 

genome for C. albicans (Muzzey et al. 2013); thus, for the 54% of genes that have 

multiple SNPs, we can both pool and cross-validate the sequencing data across 

phased SNPs. Our data not only enable us to decipher some of the cis features that 

influence translational efficiency, but they also reveal the respective roles and 

interactions that transcription and translation have in determining a gene’s 

expression level.  

 

 

RESULTS 

 

Measuring ASE in transcription and translation 

 

We used RNA-seq and ribosome profiling to probe ASE at the transcriptional 

and translational levels, respectively. From two independent vegetatively growing 

wild-type C. albicans cultures in log phase, we prepared mRNA fragments 
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(“mRNAs”) for RNA-seq and ribosome footprints (“FPs”) for ribosome profiling (see 

Methods, Fig. S1,2). Any read spanning a SNP contains information about allele-

specific expression (Fig. 1A). We aligned reads to our phased diploid assembly of the 

C. albicans genome, requiring a perfect match at SNP positions in order to identify 

allele-specific reads. For each allele, we summed the mRNA and FP reads from both 

replicates across all SNPs; the allelic ratio of mRNA reads reflects transcriptional 

ASE, and the allelic ratio of translational efficiency (“TE” where TE = FP / mRNA) 

represents translational ASE. 

We validated our data by several analyses. First, if our data were reliable, we 

would expect to observe a consistent ASE bias across many SNPs within the same 

gene. Fig 1B shows CHO2, a representative gene with 17 discrete SNP windows, 

where a SNP window contains all nucleotides that are 30 or fewer nucleotides 

upstream of a SNP, since—with our average read length of 30nt—all such positions 

will contain allele-specific expression information. The sum across SNP windows 

indicates favored translation of the B allele and comparable transcription of both 

alleles. Importantly, these features are also apparent within the large majority (15 

out of 17) of the 17 SNP windows (Fig. 1B,C). For CHO2, the agreement among SNP 

windows in terms of which allele was favored at the FP level was 88% (15 / 17 = 

0.88); such agreement is very unlikely to occur if SNP windows randomly favored 

either allele (p = 0.0023, binomial test). Across all genes, we find average signal 

coherence across multiple SNPs of 80%-89% for mRNAs and 76%-80% for FPs 

(ranges depend on sequence coverage, with higher coverage giving higher 

coherence; see Methods). Coherence among FPs may be slightly lower than for 

mRNAs due to ribosome-progression effects: for instance, an allele with low overall 

TE relative to its homolog may nonetheless have higher FP signal in a particular SNP 

window if the sequence or structural features of the mRNA at that SNP window 

cause the ribosome to pause or slow down. 

We next considered the impact of alignment error potentially arising from 

three sources: (1) allele-specific biases in library generation and sequencing, (2) 

inadequacies with the diploid genome assembly, and (3) errors in the scripts we 

used to process the data. We reasoned that such errors would manifest as 
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systematic disparities between the levels of allele-specific reads and nonspecific 

reads. For instance, if our phased assembly only contained half of the real SNPs in 

the genome, then reads harboring the neglected SNPs would fail to align, leading to 

lower counts in our ostensibly nonspecific regions. We calculated the coverage by 

allele-specific reads and compared it to the level of coverage by the nonspecific 

reads that lack SNPs, and indeed they were closely matched for both CHO2 (Fig. 1D, 

p > 0.05, KS test) and across all SNP-containing genes more generally (Fig. 1E, 

regression slope = 1.007). 

 

 

Assessing the significance of ASE 

 

To determine which genes have significant translational ASE bias, we 

employed a bootstrapping strategy. In assigning significance it is important to note 

that since our measurement of ASE involves a ratio of two sums, our calculations 

could be highly susceptible to noise. We wanted to distinguish among several 

scenarios, depicted schematically in Fig. 2A for a mock gene with a single SNP. In 

particular, we aimed to differentiate those genes that have allelic bias reproducibly 

across allele-specific positions in the gene (scenario #1) from those whose 

calculation of TE is dominated by a minority of positions (scenario #2), or those that 

simply lack allelic bias (scenario #3).  

 For each gene, we compiled the list of all nucleotide positions in SNP 

windows (i.e., all reads mapping to these positions contain allele-specific 

information) that span the open reading frame (see Methods). Since each SNP 

window is ~30nt in length, this list generally contained ~30 positions per SNP 

window. For a list of length x, we next created 5,000 new lists, each containing x 

positions that were chosen at random and with replacement from the original list. 

For each random list, the TE was calculated from the mRNA and FP reads at the 

randomly chosen positions and compiled into a “bootstrap distribution”. The 

bootstrap distribution shows the likelihood of a given ASE bias based on the 

empirically observed read counts. For scenarios #1 and #3, the bootstrap 

distributions are narrow, since nearly all positions have the same balance between 
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FPA, FPB, mRNAA, and mRNAB. Thus, random lists comprised of these positions will 

tend to report similar TE values. Conversely, for scenario #2, the bootstrap 

distribution is wide, since the eighth position—which alone has strong allelic 

disparity—may be included once, many times, or not at all, in the random lists.  

We used the means and standard deviations of the bootstrap distributions to 

classify whether or not genes have a significant translational ASE bias. The 

bootstrap distributions for the majority of genes in the genome have both low 

means and low standard deviations, consistent with a high confidence of no allelic 

bias (Fig. 2B, high gene density in lower-left). However, a subset of genes have 

bootstrap distributions with means that are many standard deviations away from 

zero, suggestive of allelic bias. To identify such genes systematically, for each gene 

we calculated a p-value from a z-score reflecting the number of standard deviations 

separating the bootstrap mean from zero. From the resulting distribution of p-

values (Fig. S3), we selected a cutoff such that the false-discovery rate is 5%. These 

analyses adjust for multiple hypothesis testing and revealed that 139 genes—4.2% 

of those tested—show strong and high-confidence allelic bias in TE. We used 

FuncAssociate (Berriz et al. 2003) and the Candida Genome Database GO Term 

Finder (Inglis et al. 2012) to identify significantly enriched functional categories 

among genes with allelic TE bias (see Methods) and found an unexpected 

abundance of nuclear-encoded transcripts for mitochondrially targeted proteins 

(FuncAssociate corrected p-value < 0.015; GO Term Finder corrected p-value < 

0.007; see Discussion). 

 

 

Transcription and translation have comparable effects on ASE  

  

 Since our dataset measures ASE at both the transcriptional and translational 

levels, we sought to determine the relative ASE contributions of these two 

mechanisms. For genes with bootstrap standard deviations below 0.4 at the TE level 

(Fig. 2B), we compared the respective allelic levels of mRNA, FP, and TE (Fig. 3A-C) 

and further compiled these values into histograms that depict allelic log-fold-

difference (“ALFD”; Fig. 3D). The standard deviations of ASE differences between 
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biological replicates were less than half of the respective standard deviations of the 

observed ALFD distributions (Fig. 3D and Fig. S1), arguing against a common noise 

floor that similarly affects each distribution. Additionally, noise in ALFD from low 

sequencing coverage is not a main driver of the distribution widths, since even 

median read counts for genes at the extremities of the distributions are in excess of 

50 (Fig. S4). 

 The ALFD histograms for all three metrics were largely superimposable 

(p>0.05 for all three pairwise comparisons among distributions, Mann-Whitney U 

test), indicating that allelic variability at all three levels affects a comparable 

number of genes by a similar amount. However, interpreting the overlap in 

mRNAALFD, FPALFD, and TEALFD distributions is complicated by the fact that FP levels 

are a function of mRNA levels, and TE is a function of both FP and mRNA. Overlap 

between the FPALFD and mRNAALFD distributions could result trivially from a perfect 

correlation between mRNAALFD and FPALFD levels. However, such a perfect 

correlation would lead to a delta function for the TEALFD distribution, since TEALFD = 

FPALFD – mRNAALFD. If distributions for mRNAALFD and FPALFD overlapped but the 

values were uncorrelated, then the distribution width for TEALFD would be higher 

than the respective widths for mRNAALFD and FPALFD, since the variances for 

independent values would be additive. Indeed, the congruence among all three 

distributions reflects the positive but not perfect correlation (R = 0.50) that we 

observe between mRNAALFD and FPALFD levels. 

 To further explore our results, we implemented a simple simulation that 

models transcription and translation of two alleles (see Methods). In brief, for a 

given gene, we chose its transcriptional and translational propensities randomly 

from lognormal distributions. To get allelic values for mRNA and FP, we scaled the 

respective propensities by normally distributed noise terms to get mRNAA, mRNAB, 

FPA, and FPB values. The parameters for transcription were drawn directly from the 

empirical distribution in Fig. 3A, and the mean translational propensity was derived 

from Fig. 3B. Two fit parameters—one for the width of the lognormal translational 

propensity and the other for translational noise—allowed the model to match the 

dispersion of points in both the FP and TE 2D histograms (Fig. 3F,G). In total, the 
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simulation corresponds well with the observed data both at the single-gene level 

(Fig. 3E-G, R2 = 0.946; parameters listed in Table S1) and in aggregate in the ALFD 

histograms (Fig. 3H), and we performed cross-validation to exclude the possibility 

of overfitting (Fig. S5). As expected from the observed overlap in mRNAALFD and 

FPALFD distributions, the noise-strength parameters that drive allelic differences for 

transcription and translation in the model are of similar magnitude (0.16 and 0.2, 

respectively). Further, correlation between mRNAALFD and FPALFD is effectively built 

into the simulation by the fact that FPA is a function of mRNAA but not mRNAB, and 

vice versa. Thus, the overlap among ALFD distributions for mRNA, FP, and TE in 

both the observed data and the model arises from comparable levels of allelic 

variability in mRNA and FP, coupled with correlation between these two values.  

 

 

Allelic TE bias tends to reinforce transcriptional bias more than expected by 

chance 

 

Our measurements of ASE at both the transcriptional and translational levels 

allowed us to explore whether the two processes interact in a systematic fashion to 

influence allelic bias. For instance, allelic disparity at the transcriptional level that 

favors one allele may be offset by higher TE for the opposite allele, a compensatory 

interaction that stabilizes FP levels (Fig. 4A). Alternatively, if transcription and TE 

favor the same allele in a reinforcing manner, FP levels are highly disparate (Fig. 

4B). We sought to assess the prevalence of such interactions from a scatter plot of 

mRNAALFD versus TEALFD (Fig. 4C), where genes with reinforcing interactions have 

fold changes of the same sign, and those with compensatory interactions have 

opposite sign. There is a negative correlation of -0.33 between the two fold-changes, 

which would seem to suggest a prevalence of compensatory interactions, as 

reported recently from analysis of comparable plots (Artieri and Fraser 2014; 

McManus et al. 2014). However, since TEALFD is a monotonically decreasing function 

of mRNAALFD, this negative correlation is to be expected and must be factored into 

subsequent analyses of enrichment.  

 Cold Spring Harbor Laboratory Press on April 29, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Muzzey et al. 

Page 10 of 27 

To determine whether compensatory or reinforcing interactions are 

enriched, we performed a permutation analysis. First, from the empirical plot in Fig. 

4C, we demarcated regions shown in purple and green that represent reinforcing 

and compensatory interactions, respectively.  Next, we generated 1,000 randomized 

null datasets in which the empirical mRNAALFD distribution was used to create 

randomized FP’ALFD and TE’ALFD distributions that match key features of the 

empirical data (e.g., mean, standard deviation, and correlation with mRNAALFD) but 

lack bias toward compensatory or reinforcing relationships (see Methods). From 

each randomized dataset, we counted the number of genes in the compensatory and 

reinforcing colored regions and compiled the results into histograms (Fig. 4D,E). 

This analysis revealed that compensatory interactions are not more abundant than 

expected by chance. However, reinforcing interactions are significantly enriched 

(p<0.01), suggesting that allele-specific bias can be coordinated at multiple 

expression levels, with a trend towards maximizing expression differences. 

 

Identification of cis elements that affect translational efficiency 

 

We sought to identify cis features of mRNAs that affect how well they are 

translated. Specifically, from our set of 2,132 allelic pairs that have high-confidence 

measurements of allele-specific TE (i.e., all genes in Fig. 3), we wanted to determine 

sequence properties that distinguish genes with strong allelic bias in TE from those 

lacking such bias.  

We first investigated how well codon bias might explain differences in allelic 

translational efficiency. We considered three gene sets based on their TEALFD values 

(Fig. 5A),  calculated the codon adaptation indices (“CAI”; (Sharp and Li 1987)) for 

alleles in each set, and found no significant disparity among the resulting 

distributions (Fig. 5B), consistent with codon bias playing a minor role, if any, in 

determining allelic TE bias in C. albicans. We similarly observed no correspondence 

between codon-pair bias and TEALFD (Fig. S6).  

We next considered whether the computed stability of mRNA structure near 

the start codon was predictive of TEALFD in C. albicans, since it has been found to play 

a role in bacteria (Kudla et al. 2009). We focused on the 60nt window centered on 
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the start codon; for each allele with at least one SNP in this window, we used Mfold 

(Zuker 2003) to predict the potential mRNA-folding structures.  Fig. 5C shows 

TEALFD versus the difference in folding energy for the most stable structure 

predicted for each allele. There is a weak but significant correlation between these 

quantities (Pearson correlation = 0.14, p<0.002), and we also observe that the 

number of allelic pairs with the expected relationship between 5’ stability and 

TEALFD is two-fold greater than the number with the unexpected relationship (Fig. 

5D). These data are consistent with previous observations from E. coli, but they 

show a weaker effect and argue that stability around the start codon is not sufficient 

to explain the majority of translational ASE bias. 

Finally, we explored how SNP position along the mRNA affects allelic TE bias. 

Using the gene boundaries defined from our ribosome-density data (see Methods), 

we divided the gene length into five equal-size bins, and compiled probability 

density functions (PDFs) of SNP location for each gene. These PDFs for genes with 

high or low |TEALFD| values were separately summed and again normalized to yield 

averaged PDFs (Fig. 5E; see Methods) that allow comparison of the respective 

groups’ SNP-location distributions in aggregate. Among genes with high |TEALFD|, we 

observed high SNP density in the 5’- and 3’-proximal quintiles of the averaged PDF, 

whereas genes with low |TEALFD| appear to have roughly uniform SNP positioning 

(the number of SNPs per gene was not significantly different between the high- and 

low-|TEALFD| sets; Fig. S7). Using permutation tests, we first assessed whether these 

averaged PDFs differed from each other and next considered whether they were 

different from a uniform distribution. Relative to the averaged PDFs from randomly 

subsampled gene subsets of the low-|TEALFD| set (see Methods), we found that the 

high-|TEALFD| averaged PDF has a significantly elevated sum-squared deviation from 

the low-|TEALFD| averaged PDF (p < 0.001; Fig. S8), arguing that the two averaged 

PDFs are different. Next, we examined whether these averaged PDFs differed 

significantly from a uniform distribution (Fig. 5E; see Methods): high |TEALFD| 

significantly differed from randomly permuted data (p< 0.0001, Fig. 5F), but the 

distribution of SNPs within genes with low allelic TE bias did not deviate 

significantly from a uniform distribution (p>0.05, Fig. 5G). Taken together, these 

 Cold Spring Harbor Laboratory Press on April 29, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Muzzey et al. 

Page 12 of 27 

results are consistent with |TEALFD| arising from an enrichment of SNPs near the 

termini of the ribosome’s path along an mRNA. 

 

 

DISCUSSION 

 

 Expression variation among alleles in diploid organisms is important for 

both clinical and research applications. Studies of allele-specific expression have 

appreciably advanced our understanding of transcriptional control, both in cis and 

trans. Here we have performed the first highly sensitive, genome-wide, allele-

specific assays of both transcription and translation in a natural organism. Though 

previous sequencing-based assays of allele-specific expression have been cast in 

doubt due to inconsistencies in signal across SNPs of the same gene (Gregg et al. 

2010; DeVeale et al. 2012; Kelsey and Bartolomei 2012), our RNA-seq and ribosome 

profiling datasets have high consistency across phased SNPs within a gene. The 

reproducibility across biological replicates further supports the quality of our data, 

and we were careful to filter genes using our bootstrapping approach to ensure that 

our analyses focused on genes with high-confidence measures of ASE. 

 There is consensus between our work and two recent investigations of 

translational ASE (Artieri and Fraser 2014; McManus et al. 2014) that the 

prevalence and magnitude of ASE bias are similar for both transcription and 

translation. In our data, this is indicated both by the overlap among the ALFD 

distributions of mRNA, FP, and TE and by the allelic-bias parameters of our 

simulation. Among the many implications of this observation is that the steps are 

not optimized for specific size biases. In other words, for a gene to achieve a 

particular allelic expression bias, either its transcriptional or translational control 

can be tuned. Given their comparable magnitude, we anticipated that there would be 

widespread compensation between transcription and translation, such that alleles 

tend to be comparably expressed. However, statistical analysis using our null model 

indicated that compensatory interactions were no more prevalent than expected by 

chance, and instead it is the reinforcing interactions that were overrepresented. 

Though we found no functional enrichments among the reinforcing genes, it will be 
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interesting to attribute the transcriptional and translational effects to particular 

SNPs, to assess their evolutionary history, and to determine whether the reinforcing 

interaction confers a fitness advantage to the cell. 

A priori, we expected allelic bias at the translational level to be indiscriminate 

with respect to function, and thus we were surprised to see enrichment for allelic 

bias among genes with mitochondrial roles. Importantly, our analyses only 

considered genes encoded on the eight nuclear chromosomes, not those in the 

mitochondrial genome. Since mitochondrial genomes are known to be fast evolving 

relative to nuclear genomes (Brown et al. 1979), we speculate that mitochondrially 

targeted proteins encoded on the nuclear chromosomes may need to evolve at a 

similarly rapid rate to keep pace functionally with their counterparts encoded in the 

mitochondrial genome. This possible source of evolutionary pressure may manifest 

as the observed ASE bias, and, interestingly, this ASE bias is restricted to 

translational control, since mRNA allelic variability was the same for mitochondrial 

genes as for other genes. 

Resolving all of the cis determinants of translational control is beyond the 

scope of a single study, but our work reveals a few important pieces of information. 

For instance, codon bias appears not to be a major factor in driving translational 

ASE in C. albicans. This finding differs from the observation in hybrids of 

Saccharomyces cerevisiae and Saccharomyces paradoxus (Artieri and Fraser 2014; 

McManus et al. 2014), where codon bias differences between alleles were reported 

to correlate with allelic bias in TE. We expect that the discrepancy arises from the 

fact that SNPs are far less common in C. albicans (1 per 283 coding bases (Muzzey et 

al. 2013)) than in the interspecific hybrid (1 per 10 coding bases (Kellis et al. 

2003)); therefore, the dynamic range of codon-usage-bias differences in C. albicans 

is sufficiently low that any signal is obscured by noise. 

Our results are consistent with recent findings (Artieri and Fraser 2014; Dvir 

et al. 2013; Shah et al. 2013) showing that sequence diversity near the 5’ end of a 

transcript—especially variations that affect the stability of mRNA structure near the 

start codon—affect allelic TE bias, likely by impacting initiation. However, we also 

observed significant enrichment of SNPs near the 3’ ends of genes that exhibit high 
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allelic TE bias. We argue that these 3’-proximal SNPs are not exerting their effect on 

allelic TE bias via impaired ribosome progression, since our ASE signal was highly 

coherent in SNP windows across entire genes, and genes with strong bias 

contributions from a minority of SNP windows were filtered out by our 

bootstrapping analysis. Thus, we postulate that the 3’-proximal SNPs affect allelic TE 

bias by impacting reinitiation of translation. It is well established that poly-A 

binding proteins at the 3’ end interact with translation-initiation factors at the 5’ 

end to stimulate initiation (Mangus et al. 2003; Imataka et al. 1998), and recent 

reports find that factors binding 3’-UTRs upstream of the poly-A tail can also 

enhance initiation (Bai et al. 2013; Lee et al. 2014). Thus, SNPs causing disparity 

between 3’-proximal sequences of alleles may affect allelic TE bias via 3’-mediated 

differences in initiation efficiency. 

It is likely that each gene’s ASE bias is a combination of multiple 

determinants, many of which we may not have yet identified. Resolving the effect of 

mRNA secondary structure on allele-specific TE will be greatly facilitated by recent 

techniques that probe RNA structure genome-wide (Rouskin et al. 2014; Wan et al. 

2014). However, for SNPs that do not affect mRNA structure, it is likely that the 

variants in cis sequences alter the interaction with trans factors in a way that 

influences ASE. Thus, additional work will be needed to search for disrupted RNA-

binding-protein motifs in alleles with high translational ASE bias and to verify a role 

for RNA-binding proteins via perturbation of the trans-factor composition of the 

cell. C. albicans is a well-suited model organism for these trans-factor perturbations 

because it can exist as a homozygous diploid for certain chromosomes (thereby only 

expressing a subset of trans-factor alleles), or as a haploid amenable to genetic 

manipulation (Hickman et al. 2013). Future studies of both cis and trans regulation 

of ASE also have a promising future in human cells, where the number of phased 

genomes is growing rapidly (Ma et al. 2010; Fan et al. 2011; Peters et al. 2012) and 

haploid cell lines are now available (Carette et al. 2009). 

 

 

METHODS 
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RNA-seq and ribosome profiling: Libraries for RNA-seq and ribosome profiling from 

the SC5314 strain of C. albicans were prepared as described in (Brar et al. 2011), 

with a few exceptions.  Cells were harvested via filtration in a 30°C room and then 

flash frozen in liquid nitrogen without the pretreatment of a translational inhibitor. 

To guard against post-lysis translation in the ribosome-profiling sample, we 

supplemented the lysis buffer with 50µg/ml GMPPNP and 10µg/ml Blasticidin S 

(Invivogen), since cycloheximide does not affect the ribosomes of C. albicans 

(Yamaguchi and Iwata 1970). Oligos used for rRNA subtraction are listed in Table 

S2. Deep sequencing was performed on the Illumina Genome Analyzer IIx and HiSeq 

2000. Reads from the two biological replicates were pooled to enhance total signal. 

 

Alignment: Reads were aligned using Bowtie v0.12.7 (Langmead et al. 2009), 

allowing no mismatches but up to 16 match locations per read. The Bowtie library 

was built from the diploid fasta file of the C. albicans genome containing SNPs but 

not indels (Muzzey et al. 2013); indels are almost exclusively noncoding and were 

excluded to facilitate analysis. Custom programs in C and scripts in PHP were used 

to parse Bowtie output and assign reads to their respective alleles based on their 

SNP composition. To minimize cloning-bias artifacts, reads in which the SNP 

occurred at the first or last position were not assigned to a particular allele. A two-

state, strand-specific hidden Markov model (“HMM”) was used to delineate gene 

boundaries based on our observed FP sequencing data. This unsupervised method 

of gene-boundary detection was used to enhance ASE signal measurements by 

maximizing the number of nucleotide positions that have FP density contiguous 

with a gene’s annotated coding region. Thus, the HMM performs two main functions. 

First, it corrects for misannotations in gene boundaries that could underestimate 

gene length and thereby compromise the accuracy of ASE measurements. Second, 

since FP reads range in length from 28nt to 32nt and were mapped to the genome 

based on their 5’ ends as in (Ingolia et al. 2009), the HMM automatically accounts for 

the fact that there is a variable offset between the 5’ end of a read and the part of the 

read that was in the P site; rather than readjust 5’-end alignment positions by 

subtracting a fixed and potentially flawed offset value to approximate the P site 
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position, the HMM simply identifies the empirical gene boundary based on the 

density of the 5’ ends of reads. The HMM had two states—“Coding” and “Non-

coding”—and focused only on strand-specific FP reads, since FP regions are 

embedded within mRNA regions by definition. For simplicity, it converted the FP 

signal to a binary string, where positions with zero read counts were called “0” and 

those with nonzero read counts were assigned “1”. Transition and emission 

probabilities were tuned with two considerations: (1) maximizing the number of 

open-reading frames spanned by a single, contiguous “Coding” region, and (2) 

minimizing the number of contiguous “Coding” regions that spanned multiple open-

reading frames. The following parameters were used in the final HMM, with 

performance illustrated in Fig. S9: 

State PrEmit("1") PrEmit("0") PrTrans("Coding") PrTrans ("Non-coding") 

Coding 0.2 0.8 0.99 0.01 

Non-coding 0.01 0.99 0.005 0.995 

 

A gene’s final boundaries were determined as follows:  

—5’ boundary: If the start-codon position from the Assembly 21 GFF file 

((Inglis et al. 2012) and http://www.candidagenome.org/) was embedded in 

an HMM-identified “Coding” region, the 5’ end of the “Coding” region was 

used; otherwise the start-codon position was used. 

—3’ boundary: If the stop codon was embedded in an HMM-identified 

“Coding” region, the 3’ end of the “Coding” region was used; otherwise the 

stop-codon position was used. 

In general, the HMM-demarcated boundaries differed little from the annotated gene 

boundaries, with a median length increase of 1.7%. Read counts per gene are 

included in Supplemental Table 3. 

 

 

 

Signal coherence across SNPs: The main goal of our assessment of signal agreement 

across SNPs is to ensure that SNPs reporting a large mRNA or FP bias in favor of one 
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allele do not reside in the same gene as other SNPs strongly favoring the opposite 

allele. To this end, we restricted our analysis to genes where at least 75% of SNPs 

each report an allelic difference of 25% or more, giving 185 genes at the mRNA level 

and 320 genes at the FP level. For such genes, we counted the number of all SNPs 

that favor the A allele and divided by the total number of SNPs in the gene to get the 

A-allele coherence. We calculated the B-allele coherence as 1-(A-allele coherence) 

and called the gene’s SNP coherence the maximum of the A-allele and B-allele 

coherence values. We evaluated signal coherence at two different coverage 

thresholds. The first threshold required min(mRNAA, mRNAB, FPA, FPB) > 5, giving 

540 and 754 genes, respectively, for mRNA and FP coherence analysis. The other 

threshold required minimum coverage of at least 20 reads, giving 185 and 320 

genes, respectively, for mRNA and FP analyses. 

 

Bootstrapping: Bootstrapping was performed for all genes specified in the C. 

albicans Assembly 21 GFF file (http://www.candidagenome.org/) with custom PHP 

scripts using the algorithm described in the main text. For each gene, the results 

from the 5,000 iterations were written to a text file and processed in batch with 

Python to get the mean and standard deviation of bootstrap distributions. These 

data were then analyzed in Excel. Bootstrapping means and standard deviations are 

included in Supplemental Table 3. 

 

Functional enrichment analysis: We performed two functional-enrichment tests, 

one on the set of genes shown to have strong ASE bias in TE at a 5% FDR (N=139), 

and a larger set in which we included the top 1,000 genes based on their z-score 

(i.e., how many standard deviations the bootstrap mean is from zero). The gene 

universe was all genes for which min(mRNAA, mRNAB, FPA, FPB) > 5 reads (N=3285 

genes). The large set—but not the small set—had significant functional enrichments 

after correcting for multiple hypothesis testing in FuncAssociate (Berriz et al. 2003) 

and on the GO Term Finder on the Candida Genome Database (Inglis et al. 2012). 
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Simulation and fitting: The stochastic simulation was implemented and fit using a 

custom Python script with the following equations: 

 

 

where ntxn and ntnl are the log-normally distributed transcription and translation 

propensities, respectively; k1 and k2 are the mean and standard deviation of the 

normal distribution exponentiated to yield ntxn and k4 and k5 are the corresponding 

parameters for ntnl.; k3 and k6 represent the allelic noise variables for transcription 

and translation, respectively; finally, randn() is a normally distributed random 

variable with mean 0 and variance of 1. Only k5 and k6 were fit parameters; the 

others were calculated directly from the data as follows: k1 is the mean of the 

empirical ln(mRNA) data (Fig. 3A); k2 is the standard deviation of the ln(mRNA) 

data (Fig. 3B); k3 is the standard deviation of the distances of ln(mRNA) data from 

y=x (Fig. 3A), and k4 is the mean of the ln(FP) data divided by k1 (Fig. 3B). All 

parameter values are summarized in Table S1. Each run of the simulation iteratively 

executed equations (1) through (8) 3,285 times, once for each gene in the observed 

dataset. The mRNA, FP, and TE allelic log-fold-differences were then plotted as a 2D 

PDF, shown as heatmaps in Fig. 3E-G. Error for a single run of the simulation was 

calculated as the sum of squared differences between the simulated and observed 

values for each bin in the heatmap grids shown in Fig. 3E-G. For each set of 

parameter values k5 and k6 (each parameter sampled over the range [0,5]), the 

model was run 10 times to yield an average error, and the parameters generating 
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the smallest average error are reported in Table S1, and correspondence between 

the observed and fit data is in Fig. S5. 

 

 Significance testing of compensatory and reinforcing interactions: For each gene i 

with observed allelic log-fold-difference (“ALFD”) value of mRNAALFD[i], a random 

FPALFD[j] (with j≠i) was selected from the empirical FPALFD distribution and then 

scaled to yield FP’ALFD[i] such that the correlation between mRNAALFD and FP’ALFD 

matched the observed correlation between mRNAALFD and FPALFD (r = 0.50) using the 

following equation: FP’ALFD[i] = r * mRNAALFD[i] + (1-r2) * FPALFD[j]. Importantly, after 

this scaling, the mean and standard deviation of FPALFD and FP’ALFD are equivalent. 

Finally, we calculated TE’ALFD[i] = mRNAALFD[i] – FP’ALFD[i]. The number of genes 

falling in shaded regions delineated in Fig. 4C were counted from the scatterplot of 

mRNAALFD and TE’LFD. These regions were specified based on the spread of the 

observed data. Specifically, for compensatory shaded regions, all datapoints were 

projected onto the line y=-x, the standard deviation of the projected data was 

calculated, and the green shaded region indicates distances of at least two standard 

deviations from the origin. For reinforcing interactions, corresponding steps were 

performed after the data were projected onto the line y=x. Finally, we imposed the 

heuristic requirement that abs(log10(abs(mRNAALFD[i] / TEALFD[i]))) < 0.5 such that 

we focus specifically on genes for which both mRNAALFD and TEALFD change. 

 

CAI and mRNA structure prediction: With a custom PHP script, CAI and codon-pair-

bias scores were calculated for each gene using their frequencies in coding genes. 

mRNA structure predictions were generated using QuikFold 

(http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold), with the output processed 

with custom scripts. 

 

 SNP positional enrichment at 5’ and 3’ ends: Two hundred genes with TEALFD > 0.58 

(a 50% difference between alleles) were defined as the “high |TEALFD|” group, and 

the 1,000 genes with lowest |TEALFD| were defined as the “low |TEALFD|” group. In 

each group, for each gene with at least three SNPs a five-bin PDF of SNP location was 
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calculated, and all such PDFs were summed and normalized to yield the averaged 

PDFs in Fig. 5E. Deviation of averaged PDFs from the uniform distribution was 

determined by tabulating the empirical number of genes with at least three SNPs 

from each group (i.e., 200 genes in the high TEALFD group and 1,000 genes in the low 

TEALFD group) as well as their empirical number of SNPs per gene, and then 

generating random single-gene PDFs based on uniform distribution of SNPs among 

the bins. As with the empirical data, these random PDFs were summed, normalized, 

and then compared to a uniform distribution using the sum-squared deviation 

across the five bins. Ten thousand iterations of this procedure for each group 

yielded the distributions in Fig. 5F,G. Deviation of the two averaged PDFs from each 

other was determined by creating 1,000 random subsampled sets from the low-

|TEALFD| group (N=1,000), with each subsampled set having 200 genes such that the 

subsampled sets had the same number of genes as the high-|TEALFD| group (N=200 

genes). For averaged PDFs from all subsampled sets as well as the high-|TEALFD| 

group, the sum-squared deviation was calculated relative to the averaged PDF of the 

entire low-|TEALFD| group (i.e., gray trace in Fig. 5E) and shown in Fig. S8. 

 

 

DATA ACCESS 

 

All raw and processed data from this study have been submitted to the NCBI Gene 

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession 

number GSE52236. 
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FIGURE LEGENDS 

 

Figure 1: Sensitively detecting ASE at translational level with ribosome 

profiling. (A) Schematic of the approach. For a given gene with two SNPs, 

transcripts from the B allele may be more abundant, whereas translation favors the 

A allele, as indicated by increased density of ribosomes, shown in green.  These 

biases are revealed by RNA-seq and ribosome profiling, respectively.  Allele-specific 

reads are summed across all SNPs in the gene, and translational efficiency (“TE”) is 

calculated from the mRNA and footprint (“FP”) levels. (B and C) Signal is consistent 

across many SNPs. There are 17 distinct SNP windows in orf19.169/CHO2, and the 

majority indicates a translational bias toward the B allele, but roughly equal 

transcript levels (B), with little error across SNPs (C); error bars are +/-S.E.M.  (D) 

The sum of allele-specific reads (red and blue bar) matches the level of nonspecific 

reads that do not include SNPs (gray bar) for orf19.169; error bars are +/-S.E.M. (E) 

Across all genes, the fraction of SNP-containing reads corresponds strongly to the 

fraction of gene length comprised of SNP-containing windows (E).  

 

Figure 2: 4.2% of genes show translational allelic bias. (A) Schematic of the 

bootstrapping procedure. (top) For a mock gene containing a single SNP, 

approximately 30 consecutive positions contain allele-specific information, and 

three scenarios for read distributions are shown: #1 shows reproducible bias 

toward allele A in blue; #2 shows how a single position could suggest a bias that is 

not supported by other positions, and #3 shows a consistently reported lack of bias. 

(middle) For each of 5,000 iterations, 30 positions are selected randomly and with 

replacement, and a TE value is calculated from the mRNA and FP reads from those 

positions. (bottom) The results are tabulated into a histogram, where the mean and 

standard deviation of the bootstrap distribution reflect the magnitude and 

confidence, respectively, of allele-specific bias in TE. (B) Scatterplot and 
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accompanying histograms (top and right) showing the bootstrap means and 

standard deviations for the 3,285 genes with at least 5 reads for mRNAA, mRNAB, 

FPA, and FPB (shading indicates the metric with the fewest read counts, as shown in 

the legend at bottom). Blue-rimmed circles indicate genes that pass the 5% FDR 

threshold. 

 

Figure 3: ASE at translational level is as strong as at transcriptional level. (A-C) 

Scatterplots of the respective allelic levels of mRNA (A), FP (B), and TE (C). (D) 

Histograms of mRNAALFD, FPALFD, and TEALFD, where gray dotted lines indicate the 

two-standard-deviation boundary of error distributions from biological replicates 

(Fig. S1). (E-G) Top panels show 2D heatmap PDFs of observed data from (A-C), and 

bottom panels depict predicted data from simulation; cool and warm colors indicate 

lowly and highly populated bins, respectively. (H) Simulated data in (E-G) was used 

to plot histograms of mRNAALFD, FPALFD, and TEALFD. 

 

Figure 4: Biases in transcription and translation are often coordinated, with 

interactions favoring compensation over reinforcing. (A,B) Specific examples of 

compensatory (A) and reinforcing (B) interactions between transcription and 

translation. Genes with compensatory interactions have higher allelic difference at 

the mRNA level than at the FP level, whereas those with reinforcing interactions 

differ more at the FP level than at the mRNA level. (C) Scatterplot of mRNAALFD and 

TEALFD levels, where genes from (A) and (B) are indicated as darkened circles, and 

shaded regions indicate compensatory and reinforcing interactions, as indicated. 

The purple and green regions’ curved portions reflect the two-standard-deviation 

spread of the data along the y=x and y=-x lines, respectively, and straight segments 

are based on a heuristic chosen to ensure that both the mRNAALFD and TEALFD values 

are nonzero (see Methods). (D, E) PDFs indicating the number of reinforcing (D) and 

compensatory (E) genes from permuted data; arrows indicate the number of genes 

from the observed data. 
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Figure 5: mRNA structure stability near start codon and SNP positioning near 

termini correlate with translational ASE bias. (A) Genes with high TEALFD are 

shaded in blue and red, and those with low TEALFD are shaded gray. (B) Allelic 

disparities in codon bias are not different among the gene sets in (A). (C) Scatterplot 

of TEALFD versus the difference in predicted folding energy of the 60-nt window 

surrounding the start codon for all genes with at least one SNP in the window. 

Shading indicates regions that are at least one standard deviation away from zero 

on each axis, with purple regions representing the expected relationship between 

structure stability and TE, and gray indicating the unexpected relationship. (D) Pie 

chart quantifying the number of genes falling in each region demarcated in (C). (E) 

PDF of SNP density as a function of position for genes with high (green) or low 

(gray) TEALFD (see Methods); the dashed line shows the uniform distribution. (F,G) 

PDFs indicating the sum-squared deviation from the uniform distribution from 

permutation analyses for genes with high (F) and low (G) TEALFD (see Methods); 

observed values indicated by black arrows. 
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