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The human sex ratio (fraction of males) at birth is close to 0.5 at the
population level, an observation commonly explained by Fisher’s principle.
However, past human studies yielded conflicting results regarding the
existence of sex ratio-influencing mutations—a prerequisite to Fisher’s
principle, raising the question of whether the nearly even population
sex ratio is instead dictated by the random X/Y chromosome segregation
in male meiosis. Here we show that, because a person’s offspring sex
ratio (OSR) has an enormous measurement error, a gigantic sample is
required to detect OSR-influencing genetic variants. Conducting a UK
Biobank-based genome-wide association study that is more powerful than
previous studies, we detect an OSR-associated genetic variant, which
awaits verification in independent samples. Given the abysmal precision
in measuring OSR, it is unsurprising that the estimated heritability of OSR
is effectively zero. We further show that OSR’s estimated heritability would
remain virtually zero even if OSR is as genetically variable as the highly
heritable human standing height. These analyses, along with simulations of
human sex ratio evolution under selection, demonstrate the compatibility
of the observed genetic architecture of human OSR with Fisher’s principle
and render it plausible that multiple OSR-influencing genetic variants
segregate among humans.

1. Introduction
In most dioecious species, especially mammals, the population-level sex ratio
(fraction of males) at birth, or PSR, is approximately 0.5 [1–4], meaning that
roughly equal numbers of males and females are born in a population. This
parity is commonly explained by Fisher’s principle, an idea that can be traced
back to Charles Darwin [3], Carl Düsing [5] and Ronald Fisher [6]. Briefly,
because the total number of offspring is the same for all males of a popula-
tion combined and for all females of the population combined, when the
population has more males than females (PSR > 0.5), on average a female has
more offspring and therefore higher fitness than a male. If the mean parental
investment in a male offspring equals that in a female offspring, the lower
the offspring sex ratio (OSR) of a genotype, the higher its fitness. Hence,
genotypes with lower OSRs are selected for until the PSR reaches 0.5, at which
point genotype fitness becomes independent of its OSR. Conversely, when
PSR < 0.5, genotypes with higher OSRs are favoured until the PSR reaches 0.5.
This elegant adaptive model, acclaimed as ‘the most celebrated argument in
evolutionary biology’ [7], is the prevailing explanation of sex ratio evolution
[8–15].

The operation of Fisher’s principle has been documented in some species
under laboratory [16–19] or natural [20–23] environments. However, most of
these species use non-chromosomal sex determination (e.g. temperature-influ-
enced sex determination in Atlantic silverside, paternal genome elimination
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in sciarid flies, haplodiploidy in ants). In species using chromosomal sex determination (e.g. the XY system in mammals and
ZW system in birds), evidence for Fisher’s principle is scarce [24].

Humans exhibit a PSR of 0.52 to 0.54 depending on the population surveyed [25]. Under the assumption that this approxi-
mately even PSR is an outcome of Fisher’s principle, OSR should be subject to mutation and genetic variation, because Fisher’s
principle stops working if OSR is not genetically variable. Surprisingly, despite decades of research, unequivocal evidence for
the genetic variation of human OSR is lacking [26–33]. For example, some authors reported that female carriers of BRCA1 and
BRCA2 mutations tend to have a reduced OSR [34,35], but others attributed this observation to an ascertainment bias [36].
Boraska et al. conducted a large-scale genome-wide association meta-analysis to identify autosomal and X-linked single-nucleo-
tide polymorphisms (SNPs) associated with a participant’s sex [33]. The meta-analysis was conducted across 51 studies with
a total of 114 863 individuals of European ancestry, with a focus on common variants (i.e. minor allele frequency or MAF >
5%). However, no significantly associated SNPs were detected. Using records of the Swedish population registry, Zietsch et al.
estimated the heritability of human sex ratio by measuring the concordance in OSR between full siblings [37]. Specifically, a
logistic regression with cluster-robust standard errors was applied to the sex of 14 015 421 Swedish cousin pairs (an individual
could be included in multiple cousin pairs). The tetrachoric correlation coefficient of the sex of cousins was calculated to
estimate the heritability of OSR, which turned out to be not significantly different from zero, with a 95% confidence interval
of [−0.00076, 0.00196]. Given that almost every human quantitative trait examined has a significant heritability [38], Zietsch et
al. argued that their finding means that human OSR is not subject to mutation and thereby Fisher’s principle is inapplicable
to humans [37]. They proposed that a genetically invariant OSR that slightly exceeds 0.5 results from the random segregation
between X and Y chromosomes in male meiosis coupled with a general between-sex difference in embryonic mortality [37].
Furthermore, under this hypothesis in which OSR is not subject to mutation, sex chromosome segregation distorters are
presumably absent; hence, selection is not needed to maintain an approximately even PSR.

Several authors objected to Zietsch et al.’s rejection of Fisher’s principle by arguing that a zero heritability of OSR at present
does not preclude past selections on OSR [39,40]. By simulating sex ratio evolution under Fisher’s principle, Zietsch et al.
countered that Fisher’s principle does not predict a loss of OSR’s heritability if it was once present [41,42]. Despite these
disputes, all agreed that human OSR is not heritable at present [37,39–42].

How confident are we that human OSR is not currently heritable? Given the number of offspring (n) of a person, the
standard error of its OSR estimate as a fraction of its OSR is CV= OSR 1 − OSR /n/OSR ≈ 1/ n when OSR ≈ 0.5. That is, the
estimation error of OSR equals 100, 71 and 58% of its true value when n = 1, 2 and 3, respectively. Although some authors
estimated an individual’s OSR from all of his/her offspring [28], this practice causes unequal OSR estimation errors among
individuals, complicating downstream statistical analysis. As a result, many past studies estimated one OSR from each child of
the individual. That is, if a person has three children, three separate estimates of OSR for the person are obtained, one per child
[37]. Regardless of how OSR is estimated, due to the small number of offspring per human individual, especially in modern
societies, OSR estimates are associated with enormous measurement errors. Such errors are expected to hinder the detection of
OSR-influencing genetic variants and cause a substantial underestimation of OSR’s heritability.

In this study, we first demonstrate that previous large-scale genetic studies of human OSR are underpowered. We then
conduct a more powerful genome-wide association study (GWAS) in the UK Biobank (UKB) [43] that leads to the detection
of a rare, large-effect SNP that is associated with OSR. Additionally, a gene-based burden test identifies two OSR-associated
genes. We show that OSR’s imprecise measurement would cause its observed heritability to be virtually zero even if its genetic
architecture equals that of human standing height, which has one of the highest heritabilities of all human polygenic traits
[44]. Finally, using simulations of sex ratio evolution respectively under stabilizing and directional selection, we show that the
observed genetic architecture of human OSR is compatible with Fisher’s principle, suggesting the plausibility of segregating
OSR-influencing genetic variants in humans.

2. Results
(a) Statistical power of prior large-scale genetic analyses of human OSR
As mentioned, two previous studies of large samples found no genetic variants [33] and no significant heritability [37] of human
OSR. We first assessed the power of Zietsch et al.’s study [37] by simulating an OSR-influencing SNP in a hypothetical sample
where the sample size matched that in the original study. Note that while the original study considered 14 015 421 redundant
cousin pairs, we simulated the same number of independent cousin pairs, potentially overestimating the power of the original
study (see §4). By specifying the MAF and effect size on OSR (β) of the SNP, we generated artificial sex configurations of the
sample. Applying the statistical method used in the original study, we explored whether the simulated data exhibit a significant
OSR heritability. The simulation was repeated 1000 times and the probability of detecting a significant OSR heritability was
estimated (figure 1a). Let us classify a SNP by MAF into three bins: extremely rare (<1%), rare (≥1% but <5%), and common
(≥5%). We similarly classify a SNP by β (in unit of OSR) into three categories: small-effect (<0.01), intermediate-effect (≥0.01 but
<0.05) and large-effect (≥0.05). We found the power of Zietsch et al.’s study to be generally low; it could not detect a significant
OSR heritability even in the presence of a common, large-effect SNP. For example, the chance of detecting a significant
heritability is smaller than 0.1% even when the SNP has MAF = 10% and β = 0.1 (i.e. having one mutant allele changes OSR from
0.52 to 0.62 or 0.42). Given the simulation scheme mentioned, the actual power of Zietsch et al.’s study is probably even lower
due to double counting the same participants in different cousin pairs.
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We similarly simulated datasets mimicking those in Boraska et al.’s study [33] to assess the probability of detecting an
OSR-influencing SNP of a given MAF and β (figure 1b). We found that Boraska et al.’s study is more powerful than Zietsch et
al.’s. For example, the hypothetical SNP in the preceding paragraph could be detected with a probability exceeding 99.9% in
Boraska et al.’s study. However, its chance of detection becomes lower than 0.1% if MAF = 1% and β = 0.1 or if MAF = 10% and
β = 0.04. Hence, Boraska et al.’s study is still not sufficiently powerful for detecting common, intermediate-effect SNPs or rare,
large-effect SNPs.

(b) Statistical power of UKB-based GWAS of human OSR
Given the limited statistical power of the previous large-scale genetic studies of human OSR, we wondered whether a higher
power might be achieved by using the UKB, which includes about 0.5 million British participants with genotype information.
Specifically, we considered 452 557 UKB participants of European ancestry. However, because the UKB does not record the
numbers of daughters and sons of each participant, we used the numbers of full sisters and full brothers of a participant to
measure the OSR of the parents of the participant. The genetic relatedness between UKB participants and their parents permits
a GWAS to identify SNPs associated with the above estimated OSR (see §4). To prevent double counting of siblings, we removed
a further 20 822 participants whose full siblings had already been counted as participants, resulting in a final sample size of
431 735 participants with sex information for a total of 873 715 full siblings. As described in the preceding section, we used
computer simulation to assess the power of this GWAS in identifying an OSR-influencing SNP.

Our simulation showed that, compared with the two previous studies, this UKB-based GWAS is more powerful and that it
can detect extremely rare, large-effect SNPs and common, intermediate-effect SNPs (figure 1c). For example, the probability of
detection is 87.0% when MAF = 0.25% and β = 0.1 and the probability of detection exceeds 99.3% when MAF = 10% and β = 0.02.
However, this GWAS still lacks power in identifying small-effect SNPs (i.e., β < 0.01) and some rare, intermediate-effect SNPs
(e.g. MAF < 5% and β = 0.02).

To assist future genetic studies of human OSR, we also used simulation to investigate the statistical power of GWAS
conducted in samples that are respectively two, four, and eight times the size of the UKB. The ability to detect extremely rare or
small/intermediate-effect OSR-associated SNPs is improved (electronic supplementary material, figure S1). For instance, when
MAF = 0.25% and β = 0.05, the detection probability is 2.2, 21.2, 88.7% and >99.9% in samples that are one, two, four and eight
times the size of the UKB, respectively. When MAF = 10% and β = 0.01, the detection probability is 7.7, 56.6, 99.6 and >99.9% in
samples that are one, two, four and eight times the size of the UKB, respectively.

(c) UKB-based GWAS detects an OSR-associated SNP
Encouraged by the above power analysis, we performed a GWAS of OSR in the UKB, which yielded a single, genome-wide
significant signal at rs144724107 in Chromosome 10 (p = 3.36 × 10−8) (figure 2a). The significant SNP exhibits a high imputation
quality (INFO = 0.89, meaning that the effective data at the imputed SNP is approximately equivalent to a set of perfectly
observed genotypes in 89% of samples) and is a G/A polymorphism where the derived A allele has a frequency of 0.25% among
UKB participants. In the data analysed, GG individuals have a total of 451 365 brothers and 416 705 sisters, resulting in a sex
ratio of 0.5200 (standard error s.e. = 0.0005); GA individuals have a total of 1517 brothers and 1700 sisters, resulting in a sex ratio
of 0.472 (s.e. = 0.008); and AA individuals have a total of 0 brothers and 1 sister due to the rarity of the A allele. The MAF and
effect size of the OSR-associated SNP detected fit the expectation of the power (82.7%) of our UKB-based GWAS (figure 1c).

A logistic regression found that the A allele at rs144724107 has an odds ratio of 0.823 per dose on sibling male/female ratio,
meaning that having one A allele lowers the sibling male/female ratio to 0.823 times its normal level. To obtain the odds ratio on
offspring male/female ratio from that on sibling male/female ratio, we performed simulations to find the relationship between
the two odds ratios (see §4). From this relationship, we estimated that the A allele has an odds ratio of 0.677 per dose on
offspring male/female ratio (electronic supplementary material, figure S2). That is, if GG individuals have an OSR of 0.520, GA
and AA individuals are expected to have OSRs of 0.423 (or 19% reduction) and 0.332 (or 36% reduction), respectively.
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Figure 1. Statistical power analysis. (a) Probability of detecting a significant heritability of offspring sex ratio (OSR) by Zietsch et al.’s study. (b) Probability of detecting
a significant OSR-associated SNP by Boraska et al.’s GWAS. (c) Probability of detecting a significant OSR-associated SNP by the present UKB-based GWAS. The blue cross
represents the MAF (0.25%) and |β| (0.097) of rs144724107. MAF, minor allele frequency; β, effect size on OSR. Colours show the probability of detection based on 1000
simulation replications.
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The detected SNP is located 2475 nucleotides upstream of the transcription start site of the ADAMTS14 gene (figure 2b).
ADAMTS14 belongs to the ADAMTS protein family that encodes multidomain extracellular proteases. Through their roles
in extracellular matrix (ECM) remodelling, ADAMTS family members affect multiple steps in animal reproduction, including
folliculogenesis, ovulation, implantation, placentation, parturition, testicular development, spermatogenesis and fertilization
[45]. For example, experimental data suggest that mouse ADAMTS10 from the sperm acrosome degrades zona pellucida, an
ECM surrounding the oocyte, to allow fertilization [46]. This said, the potential role of ADAMTS14 in reproduction is poorly
understood [45].

To validate the detected GWAS signal, we examined an independent sample—14 590 individuals of European ancestry from
the Women’s Health Initiative (WHI) [47]. The WHI includes the information of the number of daughters and sons of each
(woman) participant. However, the SNP of interest (rs144724107) was not included in the dataset, probably because the A allele
is too rare among WHI participants of European ancestry and its imputation did not meet the quality standard. We were forced
to abort this validation. Given the rarity of the A allele at rs144724107 and the lack of association signals of SNPs in the vicinity
of this SNP (figure 2a), the detected association could be spurious, and therefore future verification of our finding is desired.

Given the special role of sex chromosomes in sex determination, one might expect OSR-associated SNPs to be enriched on
sex chromosomes relative to autosomes. To test this hypothesis, we examined independent, significant SNPs in the UKB-based
GWAS, where independence was ensured using plink2 (indep-pairwise 500 kb 0.2), and significance was determined by various
nominal p-value cutoffs. However, we did not find evidence for the hypothesis, because the fraction of independent, significant
SNPs do not differ significantly between X and autosomes (p = 0.21, 0.23 and 0.69, respectively, with significance defined by
nominal p < 0.01, 0.001 and 0.0001; Fisher’s exact test).

(d) Gene-based analyses detect two OSR-associated genes
When multiple SNPs in a gene each have a relatively small effect on a trait, a gene-based GWAS may detect the associated
gene that an SNP-based GWAS cannot [48]. We thus performed two gene-based association analyses of OSR in the UKB.
First, we summarized the SNP-based GWAS summary statistics for each gene using the package sumFREGAT [49] (see §4).
However, this analysis detected no OSR-associated genes with a false discovery rate smaller than 5% (electronic supplementary
material, figure S3a). Second, we employed a gene-based burden test for rare missense variants (MAF < 1%) using the UKB
exome data [50] (see §4). This analysis identified two genes, RLF and KIF20B, to be associated with OSR with a false discovery
rate smaller than 5% (p = 8.23 × 10−7 and p = 2.24 × 10−6, respectively) (electronic supplementary material, figure S3b). RLF
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Figure 2. GWAS in the UKB detects a SNP that is significantly associated with OSR. (a) Manhattan plot for the GWAS of sex ratio in the UKB. The red dotted line
represents the genome-wide significant cutoff (p = 5 × 10−8), and the red dot represents the genome-wide significant signal at rs144724107. (b) Genomic context of
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encodes a zinc finger protein predicted to have a DNA-binding transcription activator activity (provided by Alliance of Genome
Resources [51], April 2022), but it has no known function in spermatogenesis or fertilization. KIF20B encodes a kinesin-like
protein in the kinesin-6 family and plays an essential role in cytokinesis [52]. Kinesin-like proteins are generally functional
during spermatogenesis [53,54]. Consistently, KIF20B is highly expressed in testis [55]. Additionally, KIF20B is expressed in the
human ovary, suggesting a potential role in oocyte meiosis [56]. Because part of the oocyte meiosis occurs after fertilization,
KIF20B may influence OSR by affecting the success rate of oocyte meiosis based on the genotype of the fertilizing sperm.

ADAMTS14 is not significantly associated with OSR in the sumFREGAT test (nominal p = 0.15) or the burden test (nominal
p = 0.67). BRCA1 and BRCA2, the previously debated OSR-associated genes [34–36], are not significantly associated with OSR in
either test (nominal p = 0.72 and 0.92 for BRCA1 and nominal p = 0.57 and 0.57 for BRCA2, respectively).

Additionally, genes that are sexually differentially expressed in early human embryonic development [57] do not show
significantly different p values when compared with all other genes considered in the above two gene-based association
analyses (p = 0.24 and 0.55, respectively, two-tailed Mann–Whitney U test). Similarly, autosomal genes with haploid-biased
expressions in sperm do not show significantly different p values when compared with other autosomal genes expressed in
sperm [58] (p = 0.48 and 0.85, respectively, two-tailed Mann–Whitney U test).

(e) Imprecise measurement of OSR can explain its non-significant heritability estimate
After surveying genetic variants and genes that are potentially associated with human OSR, we used linkage disequilibrium
score regression (LDSC) [59] to estimate the heritability of human OSR. From the UKB-based GWAS, we estimated that the
SNP-based heritability of OSR is −0.00055, with a 95% confidence interval of [−0.00147, 0.00038]. We further used the UKB data
to infer the family based heritability from between-relative correlations in offspring sex (see §4), which yielded 0.0032 [−0.081,
0.092]. The virtually zero heritability estimates of OSR from the UKB are in line with Zietsch et al. estimate from Swedish people
[37].

The large estimation error of OSR due to the small number of offspring per person renders the phenotypic variance of OSR
substantially overestimated and heritability substantially underestimated. To assess the impact of the OSR measurement error
on the estimated heritability, we simulated a hypothetical human sample where the genetic architecture of OSR is identical to
that of the standing height, a trait known to be highly heritable [60]. Briefly, for each UKB participant of European ancestry, we
set his/her hypothetical OSR by dividing his/her standing height by twice the average standing height of all UKB participants
of European ancestry (figure 3a; see §4). The hypothetical OSR has a mean of 0.5 and a coefficient of variation (CV) equal to
that of the standing height. The potential effects of common GWAS covariates on the hypothetical OSR were subsequently
removed statistically (figure 3a). We then conducted a GWAS on the hypothetical OSR and calculated its SNP-based heritability.
As expected, the SNP-based heritability is as high as that of the standing height: 0.43 with a 95% confidence interval of [0.395,
0.465] (figure 3b).

We then generated the sexes of a participant’s offspring by binomial sampling based on the hypothetical OSR and the true
number of siblings. The simulated dataset allowed us to conduct a GWAS and calculate the SNP-based heritability of the
estimated (hypothetical) OSR (figure 3a). The SNP-based heritability of the estimated (hypothetical) OSR is only 6.73 × 10−4, with
a 95% confidence interval of [−1.82 × 10−4, 1.53 × 10−3] (figure 3b). We repeated the simulation 20 times. The mean SNP-based
heritability of the estimated (hypothetical) OSR is 6.9 × 10−4, and none of the 20 estimates are significant at the 5% level after a
Bonferroni correction for multiple testing (figure 3b). Clearly, even when the heritability of OSR is as high as that of the standing
height, the heritability of the estimated OSR is almost zero because of the large error in measuring OSR.

(f) The observed genetic architecture of human OSR does not contradict Fisher’s principle
We detected only one SNP and two genes that are significantly associated with the human OSR in the UKB and found the
estimated heritability of OSR to be indistinguishable from 0. While these observations can be explained by the enormous
measurement error of OSR, it remains unclear whether these observations are consistent with the expectations of an evolving
population governed by Fisher’s principle. To address this question, we used SLiM 3 [61] to perform population genetic
simulations of human sex ratio evolution under Fisher’s principle, followed by a comparison between OSR’s genetic architecture
observed in the simulated population with that observed in the UKB. We separately considered two evolutionary scenarios:
stabilizing selection and directional selection.

In the first scenario, the optimal PSR was set at 0.5. Evolution started with a genetically homogenous population having
an effective population size (Ne) of 7310 (following the estimated ancestral human population size [62]) and an OSR of 0.5.
Fisher’s principle will operate as the population undergoes sexual reproduction and propagates, favouring alleles that increase
the proportion of offspring with the rarer sex when PSR deviates from 0.5, thereby creating a scenario of stabilizing selection.
Mutations altering the OSR followed an exponential size distribution. They entered the population and were subjected to drift
and selection. We first simulated the evolution of this population till it reached the mutation-drift-selection equilibrium. We
then set this time to be 800 000 years before present and started the evolutionary simulation of mutation, drift and selection
along with a model of human demographic history [62] until present. Briefly, this demographic model represents a relatively
constant ancestral human population in Africa, followed by an out-of-Africa migration and a split between European and
Asian populations, which subsequently experienced rapid expansions. At the end of the simulation, we examined the Euro-
pean population for the number of OSR-influencing genetic variants segregating in the population, the number of detectable
OSB-influencing SNPs in a sample resembling the UKB, and the estimated heritability of OSR.
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The results of the simulation varied depending on OSR’s mutation rate per genome per generation (μ) and mean mutation
size (β−) assumed (figure 4a–c). Many combinations of μ and β− yielded simulation results consistent with the empirical estimate
of the OSR heritability, whose 95% confidence interval is shown by the shaded area in figure 4a. For example, when μ ≤ 10−5 per
genome per generation, equivalent to a mutational target size of ≤ 833 nucleotides under a human mutation rate of 1.2 × 10−8 per
nucleotide per generation [63], almost any reasonable value of β− would yield a result compatible with the observed heritability
of human OSR (figure 4a). However, when μ is larger, relatively small β− values are required to produce results compatible
with the observed heritability estimate. For instance, if μ = 10−4, equivalent to a mutational target site of 8333 nucleotides, β−
has to be ≤0.01. Similarly, many combinations of μ and β− produced simulation results consistent with the detectability of 0
to 1 OSR-associated SNP in the UKB (shaded area in figure 4b). The number of OSR-influencing genetic variants present in
the simulated population increases with μ but is virtually independent of β− (figure 4c). When μ is between 10−5 and 10−4, for
example, 10–100 causal variants are expected (figure 4c), but the vast majority are undetectable in a sample like the UKB (figure
4b).

In the second scenario, when the population reached the mutation-drift-selection equilibrium aforementioned, we altered
the expected equilibrium PSR from the default value of 0.500 to 0.524 and set that time to be 800 000 years before present. We
then started the simulation of mutation, drift and selection along with the consideration of the human demographic history
mentioned. As in the simulation of the first scenario, we observed many combinations of μ and β− that yielded results consistent
with empirical observations of the OSR heritability and number of detectable OSR-influencing SNPs (figure 4d,e). In fact, given
μ and β−, the simulation results under the two scenarios (figure 4a–f) are quite similar, suggesting that it would be difficult to
distinguish between the two scenarios based solely on the present-day data. We further examined the adaptive shift of PSR in
our simulation under the second scenario, finding that a low μ (e.g. ≤10−5 per genome per generation) coupled with a low β−
(e.g. ≤0.0025) would not be sufficient for the PSR to move from its original optimum (0.500) to the new optimum (0.524) in 0.8
million years (figure 4g). However, the adaptive shift in PSR is expected under μ ≥ 10−5 and β− ≥ 0.01 (figure 4g). Note that upon
reaching the new optimum, PSR is expected to be under stabilizing selection again. Together, our simulations demonstrate that
the empirically observed genetic architecture of human OSR is compatible with the expectation from Fisher’s principle.

3. Discussion
We reasoned that, because of the enormous measurement error of human OSR as a result of the small number of offspring
per person, the statistical power in detecting OSR heritability or identifying OSR-associated genetic variants is low. Indeed,
our simulation confirmed that previous large-scale genetic analyses of human OSR were underpowered. We then conducted a
more powerful GWAS in the UKB and identified a rare allele at rs144724107 that is associated with a 19% reduction in OSR,
meaning that the probability that a birth yields a daughter rises from 0.480 for individuals not carrying this allele to 0.577 for
individuals heterozygous for this allele. While the causal effect of this SNP on OSR and the potential mechanism involved are
unknown, the SNP’s genomic location upstream of ADAMTS14, a member of the ADAMTS extracellular protease family that
has been implicated in spermatogenesis and fertilization [45], is tantalizing. Notwithstanding, the lack of association of SNPs in
the vicinity of rs144724107 with OSR (figure 2a) and the nonsignificant result for ADAMTS14 in two gene-based tests suggest
that the detected association at rs144724107 could be spurious and therefore requires validation in independent samples (given
that our attempted validation in the WHI was aborted due to its lack of information about rs144724107). The validation could
be challenging because, at rs144724107, the MAF is only 0.25% in individuals of European ancestry. Note that because our
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GWAS associated a participant’s genotype with sibling’s sex, we cannot distinguish whether the potential effect of rs144724107 is
maternal or paternal.

Our gene-based tests found two genes, RLF and KIF20B, to be significantly associated with OSR. While the potential
mechanism by which RLF influences OSR is unclear, KIF20B functions in cytokinesis [52] and is likely involved in spermatogen-
esis and oocyte meiosis [53,54,56], which could influence OSR. Further research is needed to validate the potential effects of
these genes on OSR. Neither BRCA1 nor BRCA2, whose potential impacts on OSR have been debated [34–36], are associated
with OSR in our gene-based tests.

Despite the identification of an OSR-associated SNP in the UKB, the SNP is rare and the estimated heritability of human
OSR is not significant. We found that, because of the large measurement error of human OSR, even if the genetic architecture
of OSR equals that of human standing height, which has one of the highest heritabilities of all human polygenic traits [44], we
would not have observed OSR’s heritability to be significant. In other words, the seeming lack of heritability of human OSR can
be explained by OSR’s large measurement error. Given the above finding and the fact that almost all human quantitative traits
exhibit significant heritability [38], the simplest and most plausible interpretation is not that human OSR is immune to mutation
but that the extreme imprecision of human OSR estimation hinders the detection of its heritability.

Our simulation of human sex ratio evolution under Fisher’s principle demonstrated that the observed genetic architecture of
human sex ratio is compatible with Fisher’s principle. Specifically, the empirical observation is compatible with the scenario of
stabilizing selection as well as the scenario of directional selection acting on human sex ratio; without additional information,
it would be difficult to distinguish between the two scenarios. Our simulation further suggests the plausibility of segregating
OSR-influencing genetic variants in humans, the number and size of which depend on mutation rate and size. However,
because the past and present genetic analyses would have identified most large-effect variants and most common, intermediate-
effect variants (figure 1), the undetected genetic variants, if they exist, likely have small effects or have intermediate effects
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and are rare. This is consistent with the findings from our evolutionary simulation that OSR mutations have either a small
target size, a small effect size, or both to be compatible with the observed genetic architecture of human OSR (figure 4).
Our power analysis suggests that, when the sample size increases to eight times that of the UKB, even some extremely rare,
intermediate-effect SNPs (MAF < 1% and β > 0.02) could be detected (electronic supplementary material, figure S1). However,
extremely rare, small-effect SNPs (MAF < 1% and β < 0.01) would be difficult to detect even in such large samples (electronic
supplementary material, figure S1). This said, if genes controlling OSR are conserved across animals, a more powerful strategy
in identifying such genes would be to use species that have many more offspring than humans do, because of the higher
precision in measuring OSR in such species.

While our study focused on human OSR and the forces governing the evolution of human OSR, we note that identifying
genes and mutations that impact OSR can potentially revolutionize animal husbandry. In agriculture, one sex is often of
substantially larger economic value (mostly females) than the other (e.g. hens for egg production and cows for milk production),
and individuals of lower economic value (mostly males) are usually killed soon after birth. Finding genetic variants in farm
animals with effects as large as that computed for human rs144724107 would likely bring huge profits and contribute to animal
welfare.

Our results also highlight the importance of considering phenotyping errors in assessing heritability and identifying genetic
variants of phenotypic traits, because there are conceivably other traits that are as difficult to measure precisely as OSR (e.g.
propensity for divorce).

4. Material and methods
(a) Study samples
We limited the analysis to individuals of European ancestry to avoid population stratification that could generate spurious
results in GWAS. The UKB data [43] analysed included 452 557 participants of European ancestry aged between 40 and 70 (245
509 females and 207 048 males recruited from the UK). European ancestry was determined by self-reported ethnic background
(data-field 22009) and by clustering (K-means with K = 4) the first four genetic principal components (data-field 21000). An
individual was included in the analysis only when s/he self-reported as ‘white’ and was genetically clustered with most of other
‘white’ individuals. Individuals with genotype missing rate greater than 0.02 were excluded. To prevent double counting of
siblings, we further removed 20 822 participants whose full siblings had already been counted as participants, resulting in a
final sample size of 431 735 participants with sex information for a total of 873 715 full siblings. Our study was approved by the
UKB (#177030).

Our analysis of the WHI data [47] included 14 590 individuals of European ancestry aged between 50 and 79 (all postme-
nopausal females recruited from the USA). European ancestry was determined by self-reported ethnic background (RACE =
‘white’). Additional quality control on genotyped cohort is described in the WHI GWAS Harmonization and Imputation Project
[64]. We aimed to use the WHI data to validate the OSR-associated SNP identified from the UKB. Our project was approved by
the WHI (#33897).

(b) Variant screening
For genetic variants in the UKB, genotyping, imputation and preliminary quality control were conducted by the UKB [43]. We
excluded SNPs that satisfy any of the following conditions: (i) MAF < 0.1%, (ii) imputation quality INFO < 0.8, (iii) genotyping
missing rate > 20% and (iv) Hardy–Weinberg equilibrium rejected at p = 10−10. In the end, 13 562 115 SNPs on autosomes and in
the non-pseudoautosomal region of the X chromosome were used.

The WHI data consist of six GWAS studies: Hip Fracture GWAS (HIPFX), SHARe, GARNET, WHIMS+, GECCO and
MOPMAP, although participants of SHARe are non-Europeans so they were not included in our analysis. Each study performed
cohort recruitment, genotyping, and initial quality control independently. Data harmonization and imputation were then
conducted jointly for the six GWAS studies by WHI GWAS Harmonization and Imputation Project (see [64] for detailed
descriptions). We merged the five harmonized datasets using Canary [65], and excluded SNPs that have low imputation quality
(Rsq < 0.8) or have MAF < 1% (rs144724107 was absent even before the above filtering). In the end, 6 263 078 SNPs remained.
SNPs on the X chromosome were not imputed, so they were not included.

(c) Sex ratio
The UKB does not record participants’ numbers of daughters and sons, but instead provides their numbers of full sisters and
full brothers. The relevant UKB survey question is ‘How many sisters/brothers do you have? (Please include those who have
died, and twin sisters/brothers. Do not include half-sisters/half-brothers, step-sisters/step-brothers or adopted sisters/brothers.)’
Hence, the answer to this question precisely tells the sex ratio at birth for the participant’s full siblings. The information was
collected only from those participants who indicated that they were not adopted as a child. We utilized the numbers of full
brothers and sisters of a participant (i.e. the OSR of the participant’s parents) in the GWAS to identify OSR-associated SNPs.
Note that we did not consider the sex of the participant in the GWAS because of the known participation difference between
the two sexes [66]. The logic behind the GWAS on the sibling sex ratio is that, if an allele is associated with the birth of a boy,
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that allele would be overrepresented in families with a male-biased sibling sex ratio. That is, an individual carrying that allele is
likely to have more brothers than sisters. Therefore, the allele is expected to be identified by the GWAS on the sibling sex ratio.

The WHI has records of the numbers of daughters and sons of a participant. The relevant WHI survey questions are ‘Have
you had any daughters/sons?’ and ‘How many daughters/sons?’.

(d) GWAS
Details of GWAS are described in electronic supplementary material.

(e) Statistical power analysis
To evaluate the statistical power of the present GWAS and two previous large-scale genetic analyses of sex ratio [33,37], we
conducted computer simulations, with the detailed procedures described in electronic supplementary material.

(f) Correcting the observed odds ratio in the UKB-based GWAS
Because our GWAS in the UKB measured the association between a participant’s genotype and his/her sibling’s sex, which was
an indirect association analysis of OSR, the actual effect of an allele on OSR was underestimated. Because the genetic relatedness
between a person and his/her parent is twice that between the person and his/her sibling, the actual effect size (log odds
ratio) on OSR is expected to be twice the inferred effect size on the sibling sex ratio. To ensure rigor and minimize potential
biases from empirical measurement errors, we estimated the actual effect of the significant allele by simulation. Specifically,
we simulated sexes of the siblings of the UKB participants following the preceding section by assuming a true odds ratio of
the allele of interest. The true odds ratio ranged from 0.55 to −0.82 in our simulation, and the allele frequency was fixed at
0.0025. The allele’s effect was assumed to be paternal. As in the GWAS, we conducted a logistic regression, using the sibling
sex as the dependent variable and the participant’s genotype as the independent variable, to estimate the observed odds ratio.
The simulation was replicated 1000 times to calculate the mean and 95% confidence interval of the observed odds ratio. The
relationship between the true odds ratio and the observed odds ratio (electronic supplementary material, figure S1) was used to
correct the observed odds ratio. As expected, the true odds ratio is about twice the observed odds ratio in the log scale.

(g) Heritability estimation
SNP-based and family-based heritabilities of sex ratio were estimated, with the detailed procedures described in electronic
supplementary material.

(h) Gene-based association analyses
We performed two gene-based association analyses, with the details described in electronic supplementary material.

(i) Simulating the genetic architecture of sex ratio following that of standing height
To simulate the genetic architecture of sex ratio following that of human standing height, we obtained the hypothetical sex ratio
of a participant of European ancestry in the UKB through four steps described in electronic supplementary material.

(j) Simulations of human sex ratio evolution
We used SLiM 3 [61] to simulate sex ratio evolution in humans, with the detailed procedure described in electronic supplemen-
tary material.
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