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Abstract

Ensemble methods have been used for incremental learning.
Yet, there are several issues that require attention, includ-
ing elongated training time and smooth integration of new
examples. In this article, we introduce an incremental Sam-
pleBoost method that learns efficiently from new data by em-
ploying a class-based down sampling strategy with an error
parameter. Our novel weight initialization scheme integrates
new information effectively with the retained important ex-
amples. Experimental results shows the superiority of our
method compared to state-of-the-art incremental and batch
methods including AdaBoost, AdaBoost.M1, SAMME, and
Learn++-.

Keywords: Incremental Learning, Ensemble Classifica-

tion, Sampling, Weighting

1 Introduction

Massive amount of data is generated in many applica-
tions and specially in the medical field. It is common in
such cases to continuously acquire data that contain im-
portant information and representative examples. An
example of this is Capsule Endoscopy (CE) technol-
ogy. CE is used to visualize the entire small intestine
in order to detect abnormality. A patient swallows a
tiny capsule-shaped pill that has a camera. The cam-
era records a video of up to 8 hours resulting in thou-
sands of images. CE is very successful in visualizing
bleeding, tumors, and other types of abnormality com-
pared to conventional technologies such as colonoscopy
and esophagogastroduodenoscopy. However, thousands
of images are generated daily from such technologies.
Hence, the need arises for learning approaches that effi-
ciently update the existing models with new examples.
There are two strategies to employ newly acquired data:
catastrophic forgetting [6], i.e., discarding the existing
model and starting from scratch, and integrating knowl-
edge in the new data set to the model.

Boosting methods combines weak classifiers to deal
with difficult problems. Since weak -classifiers are
trained sequentially, there is great potential to perform
incremental learning [10]. However, the data size be-
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comes a difficult challenge in the application of a boost-
ing method due to multiple trainings to complete an en-
semble. In addition, boosting suffers from early termi-
nation when repetitively misclassified examples exist [1].
Such over weighted misclassified examples inflate the to-
tal error and cause termination of the training process.
Imbalanced data poses another challenge. The improve-
ment of performance of the minority classes is limited
since the decision boundary is biased to favor the ma-
jority classes.

SampleBoost was developed to destabilize weak
classifiers and has demonstrated improved accuracy and
efficiency [1]. In this paper we extend our SampleBoost
to learn incrementally from new data streams for both
balanced and imbalanced datasets. An intelligent inte-
gration process is employed by assigning the new sam-
ples proper weights. A weighted selection process is then
applied to create a representative down sampled train-
ing set that achieves improved efficiency and accuracy.
Employing a selection mechanism combined with an er-
ror parameter that adjusts the error bound, Incremental
SampleBoost (ISB) is able to avoid early termination,
learn efficiently for large multi-class datasets, and allow
an effective transition when new data becomes available.
Moreover, the method avoids favoring majority classes
by effectively balancing the classes even in multi-class
datasets.

In our experiments we compare our ISB method
with AdaBoost.M1 [4], SAMME [15], and Learn++ [10]
methods in batch learning and incremental learning
settings [7]. In addition to a Gaussian synthetic data
set, we evaluate the methods with the UCI image
segmentation data set and Capsule Endoscopy videos.

The rest of the paper is organized as follows. In
Section 2, we present the state-of-the-art incremental
learning methods. In Section 3, we present our Incre-
mental SampleBoost method. Section 4 discusses our
experimental results. Our concluding remarks are pre-
sented in Section 5.

2 Related Work

Support Vector Machines (SVM) have been improved
to learn incrementally from new data [3,11]. Syed et
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al. [12] retains the support vectors of each step to pre-
serve the boundary information gained. Giritharan et
al. [5] developed geometric incremental SVM that iden-
tifies the skin of convex hull and integrates new exam-
ples to update models. Ozawa et al. [9] introduced in-
cremental Principal Component Analysis that combines
dimensionality reduction and classification. Zhou and
Chen [14] embedded feed-forward neural networks in the
leaves of a decision tree that grows to accommodate new
examples. Utgoff et al. [13] employed a virtual pruning
for incremental decision tree induction.

Extension of ensemble has also been attempted to
adapt to new examples. AdaBoost.M1 was modified
to integrate new examples [7]. The weights of a
batch of training examples are initialized and a weak
hypothesis is iteratively generated from these samples
for a predetermined number of iterations. After each
iteration the samples weight distribution is adjusted and
a weight « is assigned to each weak hypothesis based on
the evaluation of the training data. Once a new batch of
samples is available, their weights are initialized equally
according to the size of the new batch. The new batch
is combined with the old set and thereby resulting in
a larger training set. After training all batches, the
weak hypothesis are combined using weighted majority
voting. Following this idea, we extend a multi-class
boosting method SAMME for incremental learning.

Polikar et al. [10] introduced Learn++ based on
the framework of AdaBoost. This method was then ex-
tended in Learn++.NC to integrate new classes [8]. In
Learn++, the training data is divided into two halves:
TR, is used to train the weak classifier; while both T R;
and T'E; combined are used for evaluation. The two sub-
sets ensure that misclassified samples have higher prob-
ability of being included in TR;. When a new batch of
samples is ready, the samples weights are are equally ini-
tialized according to the size of the new batch. The eval-
uation process is performed using the current ensemble.
At each iteration, the weighted error is calculated after
evaluation and the weak hypothesis weight is assigned.
A composite hypothesis is created using weighted ma-
jority voting of all current ¢ iterations. The training set
is re-evaluated using the composite hypothesis, and ac-
cordingly a composite weighted error is calculated. A
weight is thereby assigned to the composite hypothesis.
The final hypothesis is created using weighted majority
voting on all composite hypothesis.

3 Method

3.1 Boosting Weighted Error Analysis Our
analysis shows that repeatedly misclassified samples
increases the weighted error of the boosting meth-
ods rapidly which results in zero-weighted hypothe-

sis. When this occurs, some algorithms disregard the
trained iteration and continue while others terminate
the learning process. We provide a general analysis that
is applicable to AdaBoost, AdaBoost.M1, and SAMME
boosting methods. During each training iteration, the
boosting method trains a weak classifier. Decisions of
a series of weak hypothesis are then combined into a
strong one to minimize the generalization error. Each
weak hypothesis is evaluated using the training data in
each iteration. Based on this evaluation, each weak hy-
pothesis is assigned a weight « that shows the strength
of its contribution to the overall decision. The evalua-
tion assigns higher weights for misclassified samples and
lower weights for correctly classified ones to alter the
data distribution and focus on hard to classify samples.

However, repetition of misclassified samples results
in extreme weight increase. This increase forces the
weighted error above its maximum bound and accord-
ingly assign a zero weight for the corresponding weak
hypothesis as early as the second iteration. The mecha-
nism of boosting methods allows adding classifiers that
can construct a modified decision boundary. However,
when these weak classifiers produce the same misclassi-
fied samples, the boosting method terminates and con-
verges to a single classifier that requires larger training
time. The analysis shows that if any number of samples
is repeatedly misclassified, the boosting methods gener-
ates zero-weighted hypothesis and terminates rapidly.

Given a training set (z1,91),...,(zn,yn), where
x; € Xandy; € Y ={1,...,K}. N is the total number
of examples and K is the total number of classes. Each
example has an initial weight wy (i) = 1/N.

We assume that m samples are misclassified after
training the first iteration, where m € {1,...,N}.
Following AdaBoost.M1 and SAMME algorithms, the
weighted error is calculated according to

N
(3.1) e = wili)[y; # he(:)]

i=1

[-] denotes an indicator function that returns 1 if true
and 0 otherwise. hy(z;) represents the class label
decided by the weak hypothesis of iteration ¢. The
weighted error of the first iteration is then equal to
€1 = 4. After training the second iteration, assume
that same m samples are misclassified. The weights of
the m misclassified samples will be adjusted to

et

TN,

w2

and for the N — m correctly classified samples to
e~ ™

T NW,

w2
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W5 represents a normalization factor. Wy =
Eiv wy = Fret 4 W@‘al and « represents the con-
tribution weight of the weak hypothesis.

1—61

(3.2)

a1 = 3 log(——L) + 5

€1

[ represents a factor that is equal to 0 for AdaBoost
and AdaBoost.M1, and to %log(K — 1) for SAMME
algorithm. On repetition of misclassified samples, the
weighted error following the second iteration is adjusted
to

m
et

(33) €= N =
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The weighted error can be simplified after substitution
with the values of €; and oy to

5 — 1le?]

3.4 =
( ) €2 [%—1][62’6]4‘%_1

The weighted error can be further simplified to

1

(35) €y — 1-— QQTH

Substituting with the the value of 3, we get

0.5 AdaBoost
(3.6) ea=14 05 AdaBoost.M1
— % SAMME

In all boosting methods, the weighted error sharply
increases and passes the upper bound. This results in
a zero weight for the weak hypothesis due to repetition
of misclassified samples.

3.2 Incremental SampleBoost Incremental Sam-
pleBoost, presented in Algorithm 1, employs a class-
based weighted sampling. In each training round, a
number of examples is selected from each class. The
selection process in only dependent on the distribution
within each class. Hence, the data distribution decides
the selection probability. For each class, highly weighted
examples have greater probability of being selected. Af-
ter each training iteration, the entire training set is eval-
uated and the class-based weighted selection process is
repeated.

When a new batch of examples is available, their
weights are initialized following our Algorithm 2. The
initialization process plays a vital role in reducing
the generalization error and allowing smooth transition
when aggregating new data. The training set is evalu-
ated and the same selection process is repeated during

every round according to the weights of the now larger
training set. In balanced training, the number of se-
lected examples per class can be fixed during iteration.
In case of imbalanced, multi-class problem, especially
with a high imbalance ratio, the size can be determined
based on the size of the smallest minority class. Assume
|s1] is the size of the smallest class. A set of |s,| samples
should be selected from all the other classes using our

selection mechanism so that |s;| = |s.|. The selected
samples set then is
(3.7) St = {Usy,,Usq_}, where Sy C Ry

S represents the selected samples set upon which the
training will occur and Ry represents the entire training
set. s;, is the samples present in ¢ number of minority
classes, while s,_ is the samples present in z number
of classes other than minority. This sampling process
is aimed to recover balance among all classes. Also,
it allows flexibility of training class size when new
examples become available for the minority class.

In contrast to Learn+-, to reduce evaluation time
during an iterative training process, and to allow
smooth transition on the introduction of new data, the
evaluation process is done with only the corresponding
hypothesis. In learn++, using ensemble hypothesis will
result in a significant increase in training time as well
as in the weighted error as it will be biased towards
old data. Based on the evaluation of each hypothesis, a
weight a is assigned.

We include an error parameter v to the loss func-
tion. The hypothesis weight will be calculated according
to Equation 3.8. Hence, the maximum weighted error
condition will be ﬁ If the weighted error exceeds this
value, the weak hypothesis does not contribute to the
overall decision, i.e., ay = 0.

Whenever new data is available, it is combined
with the older samples for the selection process. For
incremental learning, only the samples weights of the
last training iteration in addition to the final hypothesis
are required from previous knowledge.

We assume a training set formed of batches of data
D,, where p = 1,...,P. FEach batch is formed of
samples (z1,41),..., (xn/,yn') where x; € X, y; € Y =
{1,..., K}, and total number of samples N = PN’. In
the description of this algorithm, we use [-] to denote
the indicator function that returns 1 if true and 0
otherwise and use Z[.] to denote the indicator function
that returns 1 if true and —1 otherwise.

3.3 Weight Initialization Weight initialization for
the new examples plays a very important role in suc-
cessfully learning the updated information. Assigning
maximum weights results in driving the focus of a weak
learner entirely on the new data and loses generaliza-
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Algorithm 1 Incremental SampleBoost

Algorithm 2 ISB Weight initialization

1: forp=1,...,P:do

2:  Initialize distribution weights of new batch ac-

cording to Algorithm 2.

fort=1,...,7:do

: Set training data Ry = {D1,...,D,}

5: Select a subset S; C Ry, Sy = {Us;}, j =
{1,..., K} according to distribution. In case of
imbalanced training S; is calculated according
to Equation 3.7

oW

6: Train a weak learner h; using S;.
7 Evaluate the weak learner using R;.
| Ry

hy = arg }{HGHIIJ € = Zwt(i)[[yi # hi(z)]
! i=1

8: if € > # then
9: return oy =0
10: end if
11: Set a weak learner weight «.
1 1-— €t
(3.8) ar = 5[log(———) +log(7)]
€t
12: Update the data distribution weights
wy <= w,.eleTyiFh(z)])
13: Normalize w; to form probability distribution
14:  end for
15: end for

16: Combine weak learners h; into a strong learner H (x)

T
H(z) = h
(v) = argmax } _ k()

t=1

tion of the data set. If this is combined with ensemble
hypothesis of previous evaluation as in Learn++, the
zero-weighted hypothesis problem becomes more severe.
On the other hand, assigning minimum weights results
in driving the weak classifier’s focus to the old data and
loss of new valuable information. During evaluation,
the misclassified new samples will cause an increased
weighted error and again an increased number of zero-
weighted hypotheses. In both cases, if the algorithm
is allowed to continue, it might need many iterations
to be able to recover from this problem by successively
updating the weights.

Initializing new samples with a weight of |D71,4’ where
|Dp| is the size of the new batch, following AdaBoost and
SAMME, results in a uniform distribution weights. Dif-

1: for j=1,...,K : do
2:  if (p#£1) then
3 Find the maximum and minimum weights in

class j and calculate the mean.
I — maz(wi,(i))+min(wi.(i))

4

5 Initialize new szamples 27 with I.

6: else _

7 Initialize distribution weights w? (i) = 1/|Ds|
8 end if

9: end for

ferent classes have different distributions and degrees of
hardness. While some classes might have samples with
high weights, some other classes might be linearly sepa-
rable. Assigning equal weights to samples of all classes is
unjustified since these weights might be extremely high
or low for some classes. It also might result in a biased
selection process.

Motivated by these problems and our class-based
weighted selection strategy, we developed a weight
initialization method as presented in Algorithm 2. In
the first iteration the sample weights are initialized
according to the size of the first batch wy (i) = 1/|D1].
When a new batch of data is available, the average
weights in each class are used as the initial weights
to the new examples belonging to their corresponding
classes. Hence, the initialized weights could be different
from class to class. As a result, for an individual
class, the probability of selecting new examples in the
next training round almost doubles that of the least
weighted examples and is about the half of those with
highest weights. The process allows a smooth transition
by integrating new examples with the key examples
in the existing data set. Using medium weight value
to initialize the weights for the new examples avoids
sudden increase of the weighted error.

4 Experiments and Discussion

Three data sets were prepared for our experiments;
synthetic data set, Capsule Endoscopy videos, and
UCI image segmentation data set. All experiments
were conducted using two-fold cross validation and the
average error rates were calculated. Other metrics
used to evaluate the experiments are training efficiency,
average effectiveness of new batch training F,, and
average effectiveness of training all iterations F,. FE,:
average number of non-zero weighted hypothesis within
five iterations after the introduction of new batches of
data. This measure indicates the degree of integrating
new samples smoothly. FE,: average overall number of
effective non-zero weighted hypothesis after training all
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iterations.

All experiments used Decision Trees employing
early pruning since boosting with decision trees is rec-
ognized as “the best off-the-shelf classifier” [2]. In-
cremental SampleBoost experiments employed several
down sampling sizes per class s and different values
for the error parameter . Results are presented for
different ~ that we randomly selected. For ~, we ob-
served that lower values result in a deteriorated perfor-
mance that is still better than other methods on aver-
age. Based on our preliminary experiments, we suggest
using v > 0.4K. We define a specific number of training
iterations and keep count of all zero-weighted hypothe-
ses. For the comparison, Learn++ is restricted to have
at least one sample per class after the selection process
to avoid loss of any classes during training.

A comparison of the average error rates with dif-
ferent initialization methods on the synthetic data set
using our ISB method is provided in Figure 1. The
curves show the average error rates when assigning
the new samples minimum weights, maximum weights
(as in Learn++), fixed weights (as in AdaBoost and
SAMME), and our class-based weights denoted with
Small W, Large W, Avg W, and C-B W, respectively.
The comparison shows that for most of the classes
our class-based weight initialization scheme achieves the
lowest error rates. All other methods show very close
performance and exchange the second best performance
along different classes. This indicates that out strategy
is the most effective in integrating new samples.

Weight Initialization
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Figure 1: Weight Initialization.

The first set of experiments trained with a two
dimensional (2D) Gaussian synthetic data set that was
created using a Gaussian function and includes 50
different classes. The mean of each class was generated
randomly and all classes have a unit covariance. Each
class have a sample size of 100 to form a total size of

5000 samples. The data set was trained in balanced
and imbalanced scenarios. Results of balanced training
is shown in Figure 2 and Table 1. (V) in all tables
denotes a variable sample size per class as new batches
are introduced. Five batches of data were trained.
Every 20 iterations a new batch was introduced for a
total number of 100 training iterations. All batches
have equal size including 10 samples per class for the
50 classes. Figure 2 compares the average error rates
for individual classes using ISB, Learn++, Incremental
AdaBoost.M1, and Incremental SAMME. ISB used an
fixed under sampling size of s = 8 samples per class
during all iterations with v = 30. The results show that
for most of the classes ISB achieves lower error rates.
I-AdaBoost.M1 has the highest error rates. Learn+-+
and I-SAMME have very close performance.

Table 1 compares the performance of ISB using dif-
ferent class sizes and v with Learn++ (L++), Incremen-
tal AdaBoost.M1 (I-A), Incremental SAMME (I-S), Full
batch AdaBoost.M1 (FP-A), and Full batch SAMME
(FP-S). The average error rates (AER) show that ISB
using s = 8, with 74 = 30 and vo = 49 achieves the
lowest error rates. ISB, s = 5, using 73 = 30 has a
slight increase in the error rate and I-AdaBoost.M1 has
the highest error rate. E, and E, shows that ISB with
different class sizes and + have the highest effective-
ness in integrating new samples. Learn++ comes sec-
ond while I-AdaBoost.M1, Full batch AdaBoost, and
SAMME show the least performance. Efficiency of all
methods for the synthetic data sets is very close except
for Learn++. This is explained by the ensemble evalu-
ation schemes that are employed during every training
round which results in a significantly lower efficiency.

Synthetic 2D - Balanced
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Figure 2: The average error rate for the synthetic data
set.

For the imbalanced experiments, 25 classes were
randomly selected to form the minority classes and
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then switched with the other 25 classes so that every
class is trained once as minority and once as majority.
Five batches of data were used and each batch has two
samples per minority class and 10 samples per majority
class with a total size of 300 samples per batch. This
forms an imbalance ratio of 1:5. ISB fixes s to the size of
the least minority class during all iterations. Figure 3
shows the average minority error rates for all classes.
Clearly ISB outperforms other methods along different
classes. On the contrary, Learn+-+ suffers the most
from imbalanced scenarios. This can be attributed to its
selection scheme which introduces additional imbalance
and bias towards some classes.

Table 1 shows that AER of ISB with 3 = 30 and
Yo = 49 have the least minority error rate with error
reduction of 46% compared to Learn++. While other
methods show improvement for the majority classes,
the overall AER still shows the superiority of ISB. E,
and F, show similar performance as in the balanced
training putting ISB in the lead of employing the most
effective integration. Efficiency results also shows the
low efficiency of Learn++ compared to other methods.

Synthetic 2D - Imbalanced

1l : Al [
P B BT Y
) YR WA s
b VUL AR L P
d? VAN 0
E ‘ . } —,/ﬁ I l == Leamtt
b Bl LS IR B R — — HAdaBoost ML
AR § I-SAMME.

Classes

Figure 3: The minority error rate for the synthetic data
set.

The second data set is Capsule endoscopy CE
videos. Thousands of images are generated daily from
capsule endoscopy patients. These images require a
lot of human effort to detect abnormality like bleeding
and tumors. With new examples generated, training a
single model with all the data might be infeasible and
therefore, incremental learning plays a very important
role for improved classification.

CE videos were collected from eight different pa-
tients. The number of frames of each video ranges be-
tween 40,000 to 60,000. The CE experiments have two
stages. The first classifies the frames into their respec-
tive organs along the digestive track. The process clas-

Table 1: Synthetic data set results. Number of training
samples per class (S/C), average error rate (AER.%),
minority error rate (Min%), majority error rate (Maj%),
effective new batch training (E,,), overall effective train-
ing iterations (E,), and efficiency in seconds (EFF.) for
balanced and imbalanced (Imb) training.

Balanced [1SBy1 [1SBy2 [1SBv1 [L++[ I-A [ I-S [FP-A [FP-S

s/C 8 8 5 [ V]V ][V]50 [50
AER% | 324 [ 325 [ 34.1 [35.8[44.6[33.4] 34.6 | 34.6
En 35 | 39 | 3 [34]05[25] 06 |03
B, 66.5 | 655 | 76 [40.5| 3 [125] 3 [ 15
EFF. | 47.7 [ 48.9 | 40.7 | 339 [48.2]46.8] 64.4 | 64.3
Imb 1:5 [ ISBy1  [ISBy2[L++[-A [ I-S [FP-A[FP-S
S/C v V [V [ V]V ]10:50]10:50
AER% 39.8 41.0 | 51.3 [46.9]42.1| 42.8 | 42.8
Min% 42.0 42.0 | 77.9 [64.4]60.8| 60.5 | 60.5
Maj% 37.6 40.1 | 24.8 [29.5]23.5]| 25.1 | 25.1
En 3.55 4.05 | 3.1 [1.05]2.25] 0.35 | 0.4
E, 66.2 66.7 | 34 [5.25]11.2] 1.75 | 2.0
EFF. 42.5 42.3 | 224 [30.0]30.1] 42.5 | 42.5

sifies the frames to stomach, small intestine, or large in-
testine in a balanced training. Each of these classes has
1200 images randomly selected to form a total sample
size of 3600. All images were processed using Princi-
pal Component Analysis for dimensionality reduction.
Three batches of data were trained for the experiments
and each has 200 images per class. Each batch was
trained for 30 iterations for a total of 90 iterations. Fig-
ure 4 shows that ISB (s = 50 and v = 2) outperforms
all other methods for all classes. Choices for 7 here
is 1 or 2. Learn++ has the second best performance
for the small intestine and large intestine classes while
incremental AdaBoost and SAMME have lower perfor-
mance. The increase in the error rates of all methods
except ISB for the large intestine class can be attributed
to the presence of stools at this stage of the digestive
tract. ISB appears to be robust to occlusions.

Table 2 shows that ISB with a fixed s = 50 and
s = 150 has a significant lower error rate compared
to all other methods. The error reduction reaches
32%. E, and E, show a superior performance of
ISB and specifically for s = 50 where all the 90
training iterations were effective. On the other hand, all
other methods show a significantly lower performance in
training iterations as well as integrating new samples.
The results of CE classification also show that ISB
has better efficiency compared to all other methods.
Learn++ achieves the second best efficiency. The
reason for this is that training weak classifiers with all
samples in CE takes significantly longer time than the
evaluation process done during each training iteration
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in Learn++.

Capsule Endoscopy Segmentation
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Figure 4: The average error rate for the CE data set.

The second stage of CE experiments divides the
frames into normal and abnormal images in imbal-
anced training due to unavailability of abnormal im-
ages. Training of the normal class has 2075 images
while that of the abnormal class has 25 images forming
an imbalance ratio of 1:83. Along the digestive track,
patients have massive number of normal images, and
very few numbers of images containing diseased regions.
We formed five batches of data and each contains five
samples for the minority class and 415 for the major-
ity. Each batch was trained for 20 iterations for a total
number of 100 iterations.

Table 2 reveals a massive error reduction using ISB
for the minority classes compared to all other methods.
The error rate reduction is up to 96%. The majority
class performance achieves 0% error rate for all meth-
ods. AER here is exceptionally calculated as the aver-
age of the minority and majority error rates. This was
done since we only had 25 samples to test the minority
class and 2075 to test the majority. Incremental and
full batch AdaBoost.M1 and SAMME convert to the
incremental and full batch binary AdaBoost, (I-A) and
(FP-A) in the table. ISB has the maximum FE,, and E,
while Learn++ has the lowest. It’s also noticed that a
high F,, and E, was observed for I-A and FP-A due to
the close to zero evaluation error during each training
iteration in this binary classification.

The last dataset presented is UCI Image Segmenta-
tion. The data set consists of seven classes each having
330 samples to form a total sample size of 2310. A 2-
fold cross validation was employed. Experiments were
conducted using balanced and imbalanced training. In
balanced training, five batches of samples were trained
with 33 samples per class each. Each new batch was
introduced after 20 training iterations for a total of 100

Table 2: Capsule Endoscopy CE results.
Balanced [ ISBy1 [ISBy; | L++ | I-A [ I-S | FP-A [ FP-S

S/C 50 [ 150 [ V. [ V [ V [ 600 | 600
AER% 38.0 39.3 | 479 | 53.3 | 52.8 | 56.1 | 56.1
En 5 5 [266[ 3 [21] 06 | 15
E, 90 87 [ 215 [ 95 [ 65| 2 5
EFF. 25.2 93.5 199 | 619 | 629 | 1271 | 1203
Imb1:83 [  ISBys  [L++[ TA [ FP-A
S/C v v v 25:2075
AER% 2 50 50 49
Min% 4 100 100 98
Maj% 0 0 0 0
En 5 1.2 4.3 5
B, 100 5.5 815 100
EFF. 125 66.3 66.4 105

iterations. In these experiments, in addition to apply-
ing different s and ~, we also updated the value for s
when a new batch is introduced and compared it with
a fixed s. We start the variable s with 20 samples and
add 20 additional samples when a new batch is intro-
duced. This forms sample size of 20, 40, 60, 80, and 100
per class when each of the 5 batches is introduced. ISB
with variable s is shown in Figure 5 and compared to
other methods. The figure again shows the improvement
obtained using ISB. The proposed method has the best
performance for 5 of the 7 classes and the second best for
2 of them. Learn++ ranges between the best and worst
performance across different classes. Incremental Ad-
aBoost.M1 and SAMME show very close performance.

Table 3 compares the results of ISB, using variable
(V) s and fixed s with y; = 3 and v2 = 6, with all other
methods. ISB with variable s outperforms the other
methods in terms of AER. ISB with a fixed s = 20
comes second. ISB achieves up to 53% error reduction
compared to the other methods. Although Learn++
achieves the highest F,,, ISB has a very close F,, and the
highest E,, of all methods. Learn++ achieves the lowest
efficiency. The full batch AdaBoost.M1 and SAMME
are noticed to have very similar performance across
different experiments. The reason can be seen in our
weighted error analysis due to repetition of the same
misclassified samples which results in increased weight
error during most of the iterations.

In imbalanced training three classes were randomly
selected to form the minority classes and then switched
with other four classes so that all classes would be
used as the minority and as the majority. Data was
divided into five batches, each containing 11 samples
for minority class and 33 samples for majority classes
forming an imbalance ratio of 1:3. New data batches
were introduced every 20 iterations for a total of 100
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Image Segmentation - Balanced

Table 3: UCI Image Segmentation results.
Balanced [ISBv1 [ISBy1 [ISBy2 [L++[I-A [ I-S | FP-A | FP-S

0; S/C 20 [ V V [ V]V]V] 165 [ 165
0 AER% | 1355 | 11.6 | 9.9 [20.7 [16.2]16.1] 21.4 | 21.3
00 Ey, 29 [ 31 | 31 [ 38 |26[25] 04 | 02
B o5 E, 65.5 | 53.5 | 56.5 | 41 |13.5[12.5] 2 1
e 153y EFF. | 7.02 [ 11.9 | 12 [96.7]9.3[9.04] 13.6 | 13.5
E 04 - i == leamt+

5 ol V' sy | P13 [ ISBy1  [ISBys[L++[I-A[I-S [FP-A [ FP-S

o - A S/C v V | V | V]V [55165]55:165
o //' """ R s " FSANIME AER% 15.6 15.9 | 40.8 [29.7]29.9] 34.5 | 34.5
N Min% 17.7 18.8 | 60.2 [43.2[43.8] 33.4 | 33.4

0 , ) ; . . . : Maj% 135 13.1 [ 21.5 [16.1]16.0] 35.6 | 35.6
Ey, 4.1 4.35 |3.55[2.55(2.35] 0.4 | 0.45

Classes E, 73 73.7 | 405 |142(11.7] 2 | 25

EFF. 8.6 8.52 | 77.5 |7.47|7.47| 8.48 | 8.47

Figure 5: The average error rate for the image segmen-
tation data set.

iterations. Figure 6 shows that ISB using v = 3
outperforms all other methods in reducing the minority
average error rates. Learn++ suffers most in these
imbalanced scenarios.

In Table 3, ISB with different v evidently achieves
the lowest error rate for both the majority and minority
classes. ISB also achieves the highest FE, and E,
showing its effectiveness in integrating new samples as
well as the overall training process. Same efficiency
trend was observed as in the balanced training results.

Image Segmentation - Imbalanced
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Figure 6: The minority error rate for the image segmen-
tation data set.

5 Conclusion

Ensemble classification method has great potential to
learn incrementally from new data. New batches of data
can be introduced after certain number of training it-
erations and an overall hypothesis is created to classify
unseen data. However, traditional ensemble classifica-

tion methods such as AdaBoost and its multi-class ex-
tensions AdaBoost.M1 and SAMME suffer from repeat-
edly misclassified examples which increase the weighted
error and cause termination of the algorithm. Also ex-
pensive computational resources are required to train
both old and new samples combined. Moreover, the er-
ror condition suggested by some of these methods is too
strict and contributes further to the termination prob-
lem. The weight initialization process poses another
problem as it plays a very important rule in the algo-
rithm ability of integrating new data.

Newer algorithms created to allow incremental
learning using ensemble classification such as Learn+-+
suffers in generalizing well in multi-class classification
using its down sampling mechanism. The method per-
formance deteriorates significantly in imbalanced clas-
sification scenarios with its strict error condition. Al-
though Learn++ shows improvement compared to some
other methods, the improvement is inconsistent and re-
lies on forgetting old data while keeping ensemble hy-
pothesis and assigning maximum weights to new sam-
ples.

In this paper, we introduce Incremental Sample-
Boost, an ensemble learning method that efficiently
learns from new data. The method employs a class-
based down sampling mechanism depending on the
weight distribution. The mechanism treats different
classes independently and hence avoids introducing any
bias towards any of the classes. Moreover, it balances
classes in imbalanced scenarios. The down sampling
strategy combined with an a variable error parame-
ter introduces the destabilization required for the weak
learner to generate different decision boundaries and ac-
cordingly avoid repetition of misclassified samples. Un-
like other methods, this also allows integrating the most
stable weak classifiers within the proposed framework.
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The new method also introduces a novel weight initial-
ization scheme that effectively integrates new samples.

Experimental results show the superiority of ISB to
all other methods in both accuracy and efficiency for
multi-class classification. The method also achieves a
significant improvement in imbalanced scenarios. Addi-
tionally, ISB achieves the most effective training com-
pared to other methods. ISB also shows a superior per-
formance in the ability to smoothly integrate new data
without increasing the weighted error and further wast-
ing training iterations.
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