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Abstract: The acquisition of face images is usually limited due to policy and
economy considerations, and hence the number of training exampkscbf
subject varies greatly. The problem of face recognition with imbalaneéuirng

data has drawn attention of researchers and it is desirable to understahait
circumstances imbalanced data set affects the learning outcomesolarsd r
methods are needed to maximize the information embedded in the training data
set without relying much on user introduced bias. In this article, we stuely th
effects of uneven number of training images for automatic face réwogand
proposed a multi-class boosting method that suppresses the faceitiecogrrors

by training an ensemble with subsets of examples. By recovering theckalan
among classes in the subsets, our proposed multiBoost.imb method winetsm

the class skewness and demonstrates improved performanceinkempisr are
conducted with four popular face data sets and two synthetic data sets. The
results of our method exhibits superior performance in high imbalaruestsios
compared to AdaBoost.M1, SAMME, RUSboost, SMOTEboost, SAMME with
SMOTE sampling and SAMME with random undersampling. Another adganta
that comes with ensemble training using subsets of examples is the significan
gain in efficiency.
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1 Introduction

Face recognition (FR) is an active research problem and metiyods have been developed
to improve the robustness and accuracy of the automaticepsodespite the great
improvement, the application of the methods to many realéhscenarios faces challenge
of great variation in the number of training examples per ansubject ([1, 2]).

In the training of a FR algorithm, the number of images forhrehaman subject is
usually assumed to be equal. This is only true in the coeti@ghvironment ([2]). However,
there are many applications, in which the acquisition oéfiacages is limited due to policy
and economy considerations, and hence the number of tga@xamples of each subject
varies greatly. For example, images are taken from a tetroricustody to provide an
extensive reference for future recognition. On the othadha large number of people only
have a couple of such face images captured on occasions sagipkcation for a driver
license or interview by an officer at customs and border ptimte. The training image set
with abundant examples of some subjects, i.e., the majdasses, and much less number
of examples of the others, i.e., the minority classes, dshthe defining property of the
imbalanced data set.

The problem of face recognition with imbalanced traininged@as drawn attention of
researchers and new methods are developed. [1] incorpaatest factor into the penalty
function of Support Vector Machine (SVM). By assigning ditént costs to classes (i.e.,
subjects), the experiments demonstrated that the redmgbita person with less number of
examples was improved. [3] proposed a doubly weighted remative matrix factorization
method to account for pairwise similarity of face samplethimia class and a discriminant
score of image pixels. The between sample weight was clatmed a significant factor
to improve the performance given imbalanced training gdtpfoposed an imbalanced
SVM to deal with skewed class boundary in face detectionil&iro the method presented
in ([1]), a cost factor was used to penalize the misclassifinaf the minority examples,
i.e., the examples from the minority classes

Despite the efforts devoted to the algorithm developmerietarning from Imbalanced
Data Set (IDS) problem in FR, it is desirable to understand/irat circumstances IDS
affects the FR learning outcomes, and, hence, proper #igtd remedies can be devised.
Robust methods are needed to maximize the information edelgdd the training data set
without relying on user introduced bias. In this article, avalyze the effects of IDS to the
performance of a face recognition system and propose a-pla#ts boosting method that
suppresses the face recognition errors by training an dsieesh classifiers with subsets
of examples. By recovering the balance among classes inbsets, the proposed method
circumvents the class skewness and demonstrates impreviedmance.

Therestofthis article is organized as follows: Section/iaws the related work in multi-
class boosting methods and ensemble for learning from emnlsald data. Section 3 describes
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our proposed boosting-based, multi-class classificatppraach that takes advantage of
data sampling and weight adjustment. Section 4 present&xqparimental results and
discussion. Section 5 concludes the paper.

2 Related Work

Boosting methods were designed to solve binary classificgbroblems. Directly
applying a boosting method to a multi-class problem, e.gcefrecognition, is not
straightforward. Intuitive solutions include translatia multi-class problem into several
binary classification problems using one-against-all og-against-one strategies ([5]).
Using one-against-all strategy, one model is construateddch class; the one-against-one
strategy constructs one model for each pair of classes [[§]introduced Adaboost.MH,
which employed a hamming loss to represent the averageratedior the weak hypothesis
over all the binary predictions. Using extra bits to encolds<labels, the ensemble was
able to tolerate mistakes made by a small number of class(ff#)). Guruswami and Sahai
extended AdaBoost.OC ([9]) and proposed AdaBoost.ECQ)([4bich replaced pseudo
loss with a common measurement to evaluate the training gtdd proposed an extension
to AdaBoost by including the number of classes in the clagsifieight. The accuracy
of each classifier only needs to be better than random guesd (iK’). [12] proposed a
generalization framework by employing an additive factothte accuracy, which filled the
theoretical gap of error relaxation for the base classifiersulti-class boosting.

In many real-world applications training data are usuatgwen among classes. To
address the problems of learning from IDS, one thrust ofrefftocuses on using cost
matrix. [13] introduced AdaUBoost that modified the weigpdlating rule and loss function
such that the minority examples were emphasized with higlegghts. A similar strategy
was used in ([14, 15]) to boost multiple base-classifiers wilymmetric misclassification
costs. [14] described three variations of cost-sensitd@sting, each of which used a cost
factor to modify examples’ weights. [16] introduced “a@raltion” to the weight updating
rule. The weight of a costly example receives greater inergnwhen it is misclassified,
and decreases less otherwise. [17] treated the misclassifirity examples and majority
examples differently and proposed a confusion matrix-th&seght to account for various
difficulties in classifying rare classes.

Among the boosting methods for learning from IDS, samplitrgtegies have been
heavily explored to create balanced training data sets ifitBoduced SMOTEboost
that generated synthetic minority examples using SMOT&exly during training. [19]
combined boosting and data generation and introduced tteBDast-IM method, where
hard-to-classify instances from both majority and minoitasses were identified and
used to generate synthetic examples. A similar idea of ingatynthetic examples was
also employed in E-Adsampling algorithms ([20]). CompaieDataBoost-IM, which led
to the creation of a large number of synthetic minority exspE-Adsampling faced
possible loss of the originally misclassified examples] [@bposed RAMOBoost that
ranked minority examples during boosting iteration andté synthetic minority examples
based on a distribution function. Seiffert et al. propo$edRUSboost ([22]) that extended
the AdaBoost methods by using random under-sampling tatsaldbsets of examples. It
was demonstrated that the performance of RUSboost was cabipdao SMOTEboost.
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Both cost embedding and sampling strategies improve binagassification
using imbalanced training data. Extending to multi-clas®dting, however, is not
forthright ([12]). In addition, in the application of faceaognition, many state-of-the-art
learning methods, e.g., LDA and Eigenface, produce stédmsification results which abate
the driving force of boosting strategy: diversity ([23])uQproposed multi-class boosting
method addresses the problems of learning from imbalaretadahd enabling employment
of stable learners in the ensemble.

3 Multi-class Boosting for Learning from Imbalanced Data

In a multi-class classification problem, let the number atsks bé(. The labels can then

be encoded with valudsandfﬁ. For example, for an instaneg that belongs to class

2, its label is expressed &s- .1, — =+, ..., — = }7, Where the value of the second

component of the vector is 1 indicating that this examplehgs$ to class 2 and the rest are
1
KDilrectIy extending AdaBoost to address multi-class, irehaéd problems fails due to
the stringent constraint on the performance of the weak&gf24, 11]). Given a multi-
class data set, it is reasonable to assume equal probdbiliyrandom guess to label an
instance to one of th& classes. Hence, the expected errdris % The empirical erroe
can then be expressed as the average error over all classes:

SRR SE &)
j=1 i=1 K
wherel; is the number of examples in clagandM = 3, M.

Provided with a multi-class, imbalanced data set, a classifiined with an imbalanced
data set could result in greater generalization error thdassifier trained with a balanced
data set due to the dominating number of examples in the ityaptasses ([6]). Following
the same error minimization strategy, the classifier yi@ts the region of the minority
class. Clearly, the cause of the suboptimal classifier isitieven number of examples in
the class overlap. Ideally, if the balance is restored imtbgion, the bias will diminish.

Another issue arises from stable learners that are freyuesed in face recognition
applications. For instance, Eigenface method construasbspace from the training
examples and a face recognized by finding the nearest negightiee projected subspace.
Hence, when a data sétis used to train such a face recogniz¢x), the evaluation error
over setS is close to zero. Knowing that the weight update is drivenrbgrewe can expect
little, if not zero, changes in the weights for the next tnagnround.

To address both issues of uneven data size induced biasadte Isarner, we propose
a multi-class boosting method (multiBoost.imb). Our meltipresented in Algorithm 1.
In multiBoost.imb, we introduce a perturbation strategyttbelects a subset of examples
from the majority classes according to the data distrilufide selected examples and the
minority examples form a training set. LE§;| denote the smallest class size. Following
the data distributiom; (w; : (x;,¥;) € S4), a subset of examples from each majority class
S4, denoted withS’,, is randomly selected so that the size of this subset edqoelsite
of the minority class, i.elS’,| = |S;|. The selected majority examples and the minority
examples form a subsét for training a weak learner:

S' = {US1,,US }and|S) | = |54, ], )
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wherep is the index of the minority classes ands the index of the majority classes;,
denotes the set of examples in the minority c[assgq denotes the subset of examples of
the majority clasg. The changing subset of training example ensures the catistn of a
group of diverse classifiers even with stable weak learheedition, the equal number of
examples that represents all classes suppresses the @eflokthe IDS to the construction
of a classifierf?.

Unlike the training process, the entire datasetused in the evaluation of each classifier
f*. This is necessary because not only the data distributiedsi® be updated, but also the
weighta! to the classifierf® has to be consistent to the overall performance of the learne
Without the knowledge of the underlying true data distiilmitand hence the overlapped
regions among classes, empirical error is a reasonablécmetr

The weighta! determines how much a learngt contributes to the final decision as
shown in Eq. (6). Given an IDS, the great empirical error ofiahiased learner results in a
smaller weightassignment. In fact, as training continthesexamples within the overlapped
regions are likely to have greater probabilities. To suppngossible over-weighting the
biased classifier, an attenuation factpr(~ > 1) is included in the weight calculation
(see Eg. (4), which are more likely to happen in the laterestaigthe training. Largey
subsides the impact of empirical errdr When~ = 1 the weight calculation reduced to
AdaBoost.M1 ([7]); whereas when= K — 1 the weight becomes that of the SAMME
algorithm in ([11]).

Assuming that classifiers are trained independently, thjenihavoting of an ensemble
should lead to better results than using a single clasqi#i¢})( This suggests that the weight
of classifiers that perform better than random guessingldhmmupositive. Hence, the ratio
@ has to be greater than one. Following this assumption, theénmuen acceptable
error rate for a weak learner is bounded by

g
€< —. 7
v+1 ™
In contrast to AdaBoost, the inclusion efimproves the error tolerance. If we relax our

requirement of the error rate of the weak learners to be afgnvto that of the random
guess, i.e.,

€=, (8)
combining with Eq. (7) results in the upper bound4ot.e.,
y=K-1. (9)

Hence, the choice of lies in the range ofl, K — 1].

The multiBoost.imb method updates data distribution feitg the exponential function
as shown in Eq. (5). Given that the class label is encoded astanthat consists of 1 and
= ([11]), where the index of 1 indicates the class label, thiepdoducty; f(x;) yields
one of the following two values:

L if x; is correctly classified

. N\ K-1
yif(xi) = {(Kfi)z if x; is misclassified (10)



6 X. Yuan and M. Abouelenien

Algorithm 1 MultiBoost.imb

1: Input: an imbalanced data set that consistohinority classes ang majority classessS =

{USIP7 USAq}.
2: Initialize the weightw; for each(x;,y:) with ;.
3:fort=1,2,...,Tdo
4: Construct a training sef’ following Eq. (2).
5:  Train a classifierf* usingS’ such that error is minimized.
6: Compute error off* using the entire data sét

el = waﬂft(xz) # yil

=1

where[-] is the indicator function that returns 1 if the argument is true.

if € > ﬁ then stop and st =t — 1

Compute the weight* for f*:

_ t
o = log Ltﬂ
€
9: Update and normalize data distribution

1ty gt
wf-eifo‘ yift(xi)

wt '

t+1
wi+7

whereW" = 3", wj.
10: end for

11: The ensembld’(x) aggregateg’ by maximizing the weighted sum:

F(a) = argmax(3_ o' f/(x)

wherek € [1,..., K].

®)

4)

©)

(6)
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Itis clear that the update to; of a misclassified instance is smaller than that of a cosrectl
classified instance. The gradually increasedof a misclassified instance is consistent
with the relaxed constraint on the error rate. Hence, itgmévover emphasizing the large
number of misclassified majority instances.

Given that the normalized data distributien sums to one, we can express the sum of
the data distribution as follows:

—a'yif'(x;) 1

M t
szﬁrl _ Zwte T _ Zii Z H e~ Yl (%)
7 7

=1 s=1

1 M 1 M
_ —yi >l ot (%) —yif*(xi) _
=z 2-° ' =z ¢ =L
=1 =1

where W' is a normalization factor an& = [[._, W*. Hence, the product of the
normalization factor equals to the normalized sum of weiglttates following AdaBoost:

1 M
7 — i Z e~ Yil (%) (11)
i=1

wheref*(x;) = 22:1 a® f5(x;) is an intermediate ensemble.

When an instance is misclassified, i[gf!(x;) # y;i] = 1, the functione /™ <) >
1. Together with Eq. (3), we have the upper bound of the errothasproduct of the
normalization factors < [ [ W*.

To find appropriateyr, we minimize this error bounfl[, W*. Following the definition
of W, we have

H WS — H(Z w;ﬁe—at}'ift(xai)> (12)

S

Notice thaty; f*(x;) results in two values as shown in Eq. (10), which is equivalen
1 . .
to §ft(x,»)ft(xi))\(h*(x7;) — q), wheref!(x;) f!(x;) = 25 andq is a threshold. That s,
the product of the true label and classification result isesped as functiof (¢ — h*(x;))
that gives the following results:

B B 1 if x; is correctly classified
g =0 = =1 it x, is misclassified

whereh* outputsl or —1 whenx; is classified correctly or incorrectly;is the inverse of the
uninformative error rate, i.e) = %; q sets the threshold for deciding weight changes.
Hence, combining with Eq. (8), we have

y1y1>\ = ft(Xi)ft(Xi)A = 1/62.

Based on the convexity of the exponential functions, therarpper bound in Eq. (12) is
expressed as follows:

Hwli}e—atft(xi)ft(xi)%(h*(xi)—q _ le@e—atg%(h*(xi)_ﬂ

t

< T3 wlh Geoge F00 4 (1— b)) )
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Taking the first derivative with respect td and setting it to zero, we have the expression
of at:

ot =1 1129 (13)
wherey = =4,

Note that, in training a classifier, only a portion of exansdi®m the majority classes
are used. Hence, the error minimization is in the context sifitaset of balanced training
examples. However, the given in Eq. (13) is subject to the entire training data séiictv
accounts for the entire data set.

4 Experimentsand Discussion

4.1 Experiment Settings

We employed the Eigenface ([25]) and Fisherface ([26]) &mefrecognition and use four
public face databases. The AT&T data set consists of 40 sisbjéth 10 images for each.
The AR face database consists of 126 subjects (among whiclsea50 to be consistent
with the other two face data sets) and 11 images were crogpezhith subject. The Yale
database consists of 38 subjects and 65 images for each. BB\WWibre than 13,000 face
images of over 5,000 subjects. The majority of the subjemte fess than three images. In
our experiments, we used the LFW images aligned with deapeling method ([27]) and
randomly selected 40 subjects, each of which has at least@§ds such that we can form
different imbalance ratios and perform cross validation.

To simulate imbalanced training data, half of the classesubjects) were used as the
majority classes, and the other half were treated as therityimtasses. By re-sampling the
data sets, we created training data with various imbaleatézst The average performance
of the leave-one-out cross validation serves as the baseliour studies.

Cross-validation was used. Depending on the data set Bzaumber of folds varies.
For example, AT&T database consists of 40 subjects. In tperaxents of learning from
imbalanced data set with imbalance rafic= 2, five examples of each subject from 1
through 20 were randomly selected, and the other five werd asdesting examples.
Subjects 21 through 40 were treated as the majority clagggsased on the imbalance
ratio, ten examples were used for each subject in the tigifiime majority and the minority
classes were switched in another experiment. Experimeats designed to reveal the
effects of IDS with respect to the imbalance ratio and théadilty of the problems. We
focused on the evaluation of classifying the minority atessince that is the origin of most
errors.

State-of-the methods were used in our comparison studgnSiin of SMOTEboost
for multi-class problem was developed based on AdaBoost.MZour initial study
that follows this extension ([18]), it took more than 24 hewo complete the training
of one SMOTEboost ensemble of 10 base learners and the mexfice is no better
than SMOTEboost using AdaBoost.M1 framework. Hence, tlsailte reported in this
comparison study for SMOTEboost is based on AdaBoost.M1SIRidst, on the other
hand, was developed for binary-class classification. Foctimparison purpose, we extend
itagain following the spirit of AdaBoost.M1. We also limiioensembles to 10 base learners
due to great time expense for cross-validation.
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Tablel The average error rate and standard deviation of multiBoost.imb with imtedeface

data sets.
Data Average Error Rate (%)
AdaBoost multiBoost RUS SMOTE SAMME SAMME
Sets S; (B) | Base M1 SAMME  .imb boost  boost +RUS +SMOTE
Eigenface
AT&T | 5(2) 25 10.0 10 8.8 9.5 8.8 9.5 8.8
(6.3) (16.8) (16.8) (14.5) (15.2) (14.2) (15.2) (14.2)
2 (5) 22.9 22.9 18.1 18.5 20.9 19 20.9
(18.3) (18.3) (15.9) (15.6) (16.6) (16.3) (16.7)
AR 5(2) 195 27.4 27.4 25.1 256 25 25.6 25
(15.0) (29.5) (29.5) (29.1) (28.7)  (29.7) (29.3) (29.7)
2 (5) 49.4 49.6 40.8 415 47.6 41.9 47.5
(20.2) (20.2) (19.7) (21.5) (20.6) (19.6) (20.5)
Yale 32(2) | 285 76.9 76.8 75.1 75.7 76.2 75.2 76.3
(10.2) (7.2) (7.2) (6.4) (6.9) (6.9) (6.8) (7.2)
8(8) 88.9 88.9 82.4 84.1 88.1 84.9 88.2
(3.5) (3.5) (3.5) (3.6) (3.3) (3.6) (3.5)
LFW 5(2) 83 90.5 90.5 88.6 89 81.8 88.4 81.1
(12.2) (10.2) (11.6) (12.7) (11.9) (13.6) (12.4) (13.2)
2 (5) 95 95 875 97.5 94.9 89.4 94.9
(4.8) (4.8) ) (15.8) (4.8) (6.2) (4.8)
Fisherface
AT&T | 5(2) 2 143 143 10.8 10.8 13.8 9 13.8
(4.1) (20.6) (20.6) (18.2) (a7.6) (22.4) (15) (22.4)
2 (5) 40.7 40.7 16.3 16.3 35.9 18.4 36.2
(22.9) (22.9) (14) (13.8) (22.6) (14.7) (22.2)
AR 5(2) 2.8 30.8 30.8 18.6 17.2 30.2 18.6 30.2
(5.7) (32.5) (32.5) (25.1) (25.9) (29.2) (26.3) (29.2)
2 (5) 46.3 46.3 176 17.8 40.3 20.3 40
(22.1) (22.1) (16.7) (16.9) (21.1) (17.1) (22)
Yale 32(2) | 46 31.4 31.4 28.1 29.9 29.6 355 29.7
(2.5) (13.1) (13.1) (12) (11.9) (12.3) (12.5) (12.9)
8(8) 58.7 58.7 59.2 60.1 507 63.5 50.8
(8.4) (8.4) (7.3) (7.3) (8.5) (6.3) (7.9)
LFW 5(2) 66 84.5 84.5 69.1 69.5 86.1 71.4 84.5
(18.9) (16.4) (16.4) (21.3) (21.2) (16.8) (20.2) (16.4)
2(5) 97.5 97.5 84.1 96.3 96.7 84.7 96
(5.6) (5.6) (11.9) (15.8) (6) (11.5) (5.7)

4.2 Performance Analysis

In our performance analysis, we focus on classification ef tfinority classes under
different imbalance ratios since the minority classes atmlly the important ones in a FR
problem. Table 1 summaries the average error rate (actasasses in each data set) for the
testing scenarios. The standard deviation is includeddrptrenthesis. Since the baseline
is the best result using leave-one-out cross-validatieretis only one baseline error for
each data set. The bold face font highlights the best avgrafermance in each case.
Among all scenarios, multiBoost.imb achieved 4 best peréorce out of 8 low imbalance
ratio cases (four data sets with two different base leaya@id 7 best performances out of 8
higher imbalance ratio cases. The maximum improvementapared to the second best
performance among all other methods is 12.8% in the highlamica ratio cases and 8% in
the low imbalance ratio cases. It is worth of noting that Wtk imbalance ratio, i.e 3 = 2,
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multiBoost.imb achieved highly competitive results agathe baseline performance using
both base learners.

Clearly, imbalance affects base learners differentlys ibteresting to note that AT&T,
AR, and Yale are fairly easy cases when Fisherface is apfaligt balanced data sets. The
average error rates of the baseline performance as reforiedle 1 are 2%, 2.8%, and
4.6% for AT&T, AR, and Yale, respectively. However, if thaiming data is imbalanced,
ensembles using Fisherface as base learner degrade sigtiyfic their performance.

It is evident that our proposed method multiBoost.imb aatsebetter results when
the imbalance ratio is higher. In contrast to the low imbaéaratio, multiBoost.imb also
achieved better performance with a couple of classes cadparthe baseline. It is worth
noting that RUSbhoost failed to create an effective clagsgfisemble in the higherimbalance
ratio with LFW data set. RUSboost mostly ignored all sulgestcept one in the case of
LFW data set with3 = 5. However, when we combined the random undersampling with
SAMME, the performance improved greatly.

Among all other methods, the combination of SAMME with SMOFdnpling method
yielded competitive performance in low imbalance ratioesaé4 out of 8 cases). It is
interesting to note that SAMME with SMOTE exhibited even &waverage error rate
compared to the baseline with slightly greater STD. AltHoRiSboost and SMOTEboost
have very close average error rate in high imbalance ratiolVAW data set, the performance
of SMOTEboost is better than RUSboost.

4.3 The Attenuation Factor

One key parameter in our proposed method is the attenuatiborf,. Besides the benefit

it introduces to relax the error upper bound for each leaerat, hence, avoids early
termination, it contributes a constant addition to thedeameight, which diversifies the
ensemble. However, with larger the ensemble becomes less likely to terminate due to the
relaxed error upper bound. So it is important to find the appate values for.

We studied our method by varyingvalue from 1 t2 K, and the experiment using the
combination of each data set angl @alue is repeated 6 times. Both KNN and decision trees
are used as the base learner and the imbalance ratio inclwdatio value, i.e.3 = 2 and
high ratio values§ = 5 for AT&T and AR ands = 8 for Yale). The average error rate of
the ensemble with different base learner varies fairly tyeRepending on the cases such
difference can be up to 40%. Also, the imbalance ratios t@spkrformance margin in the
range of 10%. Hence we use the average error rate improveasent indicator to reveal
the trend ofy. In calculate the improvement rate, we use the error rate it 1 as the
base.

Fig. 1 depicts the average error rate improvement. Becdugsaumber of classes in
each data set differs, the range of each curve varies aogbydi he results withy = K is
marked with an enlarged double-line symbol in red. Whea 1, multiBoost.imb degrades
to AdaBoost.M1, and whefn = K — 1, multiBoost.imb becomes SAMME. It is clear that
wheny = 1 all base learners and ensembles result in the greatest&i®oAsy increases,
the error rate reduces. This trend continues even beyordl. At v = 2K, the error rate
remains relatively small with little fluctuation from = K — 1. However, it is clear that
the error rate gives suboptimal results whes: K — 1. The best performance is mostly
achieved when the attenuation factor is in the range of (1).kGlearly, an attenuation factor
that is far greater than K-1, however, does not result iniBagmtly degraded performance.
This is in part because the weight (or the contribution jaticthe base learner becomes
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Figurel The average error rate with respect to the attenuation factor. The daubk/mbols
highlight the average error rate with= K.

less dependent on the learner performance but the attendatitor. That is, the ensemble
becomes a collection of equally weighted weak learnersarhwith subsets of examples.

Table2 The average training time in seconds.

Base Data 5 | AdaBoost SAMME | multiBoost RUSboost SAMME
Learner sets M1 .imb +RUS
Eigenface | AT&T | 2 | 27.59 26.04 25.93 25.92 17.14
5 | 19.66 19.73 11.88 11.81 7.42
AR 2 | 48.07 43.95 48.48 48.66 3161
5 | 36.87 32.66 19.04 19.27 10.39
YALE | 2 [ 38.34 36.05 38.24 37.34 3131
8 | 30.17 32.34 13.96 13.75 8.83
LFW 2 | 68.71 68.9 50.57 52.18 37.87
5 | 50.22 47.96 24.28 22.59 13.99
Fisherface| AT&T | 2 | 37.21 34.07 32.66 32.51 23.34
5 | 27.57 27.56 18.43 18.45 13.06
AR 2 | 56.38 56.33 55.19 55.08 43.52
5 | 44.05 45.08 27.49 27.36 18.78
YALE | 2 | 56.67 55.62 52.91 55.08 46.99
8 | 59.63 47.66 20.99 21.95 15.57
LFW 2 | 91.66 82.69 62.3 61.66 48.14
5 | 56.74 59.33 31.55 28.92 20.67

4.4 Efficiency Analysis

Table 2 and 3 present the average training time. For SMOT&baod SAMME with
SMOTE sampling, we recorded both the sampling and learmingst Between two base
learners, there is no significant difference in efficienti@igh Fisherface based methods
took slightly longer time in comparison to Eigenface basedthods.

Because less number of examples used to train each baser|eardersampling based
methods took much shorter time to complete model creatiata Besampling takes time,
which is trivial compared to the learning time, and we refibe sampling and training
times together. The maximum undersampling time is less tharconds. Compared
to AdaBoost.M1 and SAMME, multiBoost.imb, RUSboost, andMME with random
undersampling used almost equivalent amount of time indarhbalance ratio cases and
about 50% less amount of time in the high imbalance ratioscaBee slight advantage
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Table3 The average training time in seconds.

Base Data 8 SMOTEboost SAMME-SMOTE
Learner sets learning sampling learning  sampling
Eigenface | AT&T | 2 | 35.14 1.62 33.85 35
5 | 39.09 628.08 39 630.07
AR 2 | 65.61 2.94 70.3 3.02
5 | 83.51 1026.04 64.69 1004.94
YALE | 2 | 51.92 2.90 46.10 2.97
8 | 44.64 372.58 43.35 368.02
LFW 2 | 91.07 2.93 96.29 331
5 | 121.71 126.24 117.92 126.41
Fisherface| AT&T | 2 | 46.16 1.65 47.71 1.72
5 | 51.13 629.73 58.46 641.88
AR 2 | 82.85 2.96 82.51 3.01
5 | 82.07 1002.49 79.85 1005.34
YALE | 2 | 62.52 3.02 58.36 3.01
8 | 53.12 365.97 60.28 372.58
LFW 2 | 11061 2.97 117.54 3.09
5 | 140.91 126.01 126.05 126.17

in efficiency of undersampling based method comes from itgkcity. That is, random
undersampling during training iterations is independeuditrzo training history is consulted.

On the other hand, oversampling based methods, e.g., SM&@BEAnd SAMME with
SMOTE, clearly require a significant amount of time, espgciahen there is a high
imbalance ratio, to resample the training set. The samtilimg can take as high as 94% of
the overall training time. Even without considering the péing time used in SMOTEboost
and SAMME with SMOTE, the learning time was much greater agukatger number of
training examples.

Comparing time used for all face data sets, we can see thatdfeanent of time in high
imbalance ratio case is less dramatic. This is because aaetekample consists of more
than ten thousands features. The high dimensionality regjsignificantly more time in
training. When the imbalance ratio is low, this time for SM@DBst is relatively small (in
the order of 3 seconds). However, in the case of large imbalgatio, the time cost to create
new artificial examples is substantial for SMOTEboost. Theoaential time increment
makes SMOTEboost a less attractive method to handle higtidglianced, high-dimensional
problems.

5 Conclusion

In this article, we propose multiBoost.imb method that gyeianproves the performance
to learn from imbalanced data without relying on user intiet bias. Experimental
results demonstrated that the error rate of multiBoostigndonsistently lower than that of
AdaBoost.M1. The advantage becomes more apparent whembfadaince ratio enlarges.
In some cases our method achieves even lower error ratesdbélgat of the baseline
model, which is trained with all available examples. Witlh dawnsampling strategy, stable
classifiers such as Eigenface can be employed as the baserl@atan ensemble. Our
studies of the attenuation factor show that the best pegoomis mostly achieved when
the attenuation factor is within the range of (1, K-1). Areatiation factor that is far greater
than K-1, however, does not result in significantly degraoedormance.



A Multi-class Boosting Method 13

The comparison study was conducted with respect to thestdtes-art sampling-based
ensemble methods for imbalanced data sets. When learnimgoftanced data sets or ones
with low imbalance ratio, the performance of the comparethots is similar. However,
the improvement is substantial when imbalance ratio is.Higleontrast to underampling
based methods, multiBoost.imb takes much less numberioirtgaiterations to achieve a
performance that takes RUSboost many times more iteratboasain. Efficiency analysis
shows that multiBoost.imb and random undersampling basthods demonstrated similar
efficiency given the same number of base learners while argrng based methods
exhibited a poor efficiency due to the excessive amount of tised to create and train
with the additional synthetic examples. In the cases oflarghalance ratio, the extra time
it takes SMOTEDboost to create the training time increaspsmantially, which makes it a
less attractive method to handle highly imbalanced, highedsional problems.
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