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Abstract: The acquisition of face images is usually limited due to policy and
economy considerations, and hence the number of training examples ofeach
subject varies greatly. The problem of face recognition with imbalanced training
data has drawn attention of researchers and it is desirable to understandin what
circumstances imbalanced data set affects the learning outcomes, and robust
methods are needed to maximize the information embedded in the training data
set without relying much on user introduced bias. In this article, we study the
effects of uneven number of training images for automatic face recognition and
proposed a multi-class boosting method that suppresses the face recognition errors
by training an ensemble with subsets of examples. By recovering the balance
among classes in the subsets, our proposed multiBoost.imb method circumvents
the class skewness and demonstrates improved performance. Experiments are
conducted with four popular face data sets and two synthetic data sets. The
results of our method exhibits superior performance in high imbalanced scenarios
compared to AdaBoost.M1, SAMME, RUSboost, SMOTEboost, SAMME with
SMOTE sampling and SAMME with random undersampling. Another advantage
that comes with ensemble training using subsets of examples is the significant
gain in efficiency.
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1 Introduction

Face recognition (FR) is an active research problem and manymethods have been developed
to improve the robustness and accuracy of the automatic process. Despite the great
improvement, the application of the methods to many real-world scenarios faces challenge
of great variation in the number of training examples per human subject ([1, 2]).

In the training of a FR algorithm, the number of images for each human subject is
usually assumed to be equal. This is only true in the controlled environment ([2]). However,
there are many applications, in which the acquisition of face images is limited due to policy
and economy considerations, and hence the number of training examples of each subject
varies greatly. For example, images are taken from a terrorist in custody to provide an
extensive reference for future recognition. On the other hand, a large number of people only
have a couple of such face images captured on occasions such as application for a driver
license or interview by an officer at customs and border protection. The training image set
with abundant examples of some subjects, i.e., the majorityclasses, and much less number
of examples of the others, i.e., the minority classes, exhibits the defining property of the
imbalanced data set.

The problem of face recognition with imbalanced training data has drawn attention of
researchers and new methods are developed. [1] incorporated a cost factor into the penalty
function of Support Vector Machine (SVM). By assigning different costs to classes (i.e.,
subjects), the experiments demonstrated that the recognition of a person with less number of
examples was improved. [3] proposed a doubly weighted non-negative matrix factorization
method to account for pairwise similarity of face samples within a class and a discriminant
score of image pixels. The between sample weight was claimedto be a significant factor
to improve the performance given imbalanced training set. [4] proposed an imbalanced
SVM to deal with skewed class boundary in face detection. Similar to the method presented
in ([1]), a cost factor was used to penalize the misclassification of the minority examples,
i.e., the examples from the minority classes1.

Despite the efforts devoted to the algorithm development for learning from Imbalanced
Data Set (IDS) problem in FR, it is desirable to understand inwhat circumstances IDS
affects the FR learning outcomes, and, hence, proper algorithmic remedies can be devised.
Robust methods are needed to maximize the information embedded in the training data set
without relying on user introduced bias. In this article, weanalyze the effects of IDS to the
performance of a face recognition system and propose a multi-class boosting method that
suppresses the face recognition errors by training an ensemble of classifiers with subsets
of examples. By recovering the balance among classes in the subsets, the proposed method
circumvents the class skewness and demonstrates improved performance.

The rest of this article is organized as follows: Section 2 reviews the related work in multi-
class boosting methods and ensemble for learning from imbalanced data. Section 3 describes
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our proposed boosting-based, multi-class classification approach that takes advantage of
data sampling and weight adjustment. Section 4 presents ourexperimental results and
discussion. Section 5 concludes the paper.

2 Related Work

Boosting methods were designed to solve binary classification problems. Directly
applying a boosting method to a multi-class problem, e.g., face recognition, is not
straightforward. Intuitive solutions include translating a multi-class problem into several
binary classification problems using one-against-all or one-against-one strategies ([5]).
Using one-against-all strategy, one model is constructed for each class; the one-against-one
strategy constructs one model for each pair of classes ([6]). [7] introduced Adaboost.MH,
which employed a hamming loss to represent the average errorrate for the weak hypothesis
over all the binary predictions. Using extra bits to encode class labels, the ensemble was
able to tolerate mistakes made by a small number of classifiers ([8]). Guruswami and Sahai
extended AdaBoost.OC ([9]) and proposed AdaBoost.ECC ([10]) which replaced pseudo
loss with a common measurement to evaluate the training error. [11] proposed an extension
to AdaBoost by including the number of classes in the classifier weight. The accuracy
of each classifier only needs to be better than random guess (i.e.,1/K). [12] proposed a
generalization framework by employing an additive factor to the accuracy, which filled the
theoretical gap of error relaxation for the base classifiersin multi-class boosting.

In many real-world applications training data are usually uneven among classes. To
address the problems of learning from IDS, one thrust of efforts focuses on using cost
matrix. [13] introduced AdaUBoost that modified the weight updating rule and loss function
such that the minority examples were emphasized with higherweights. A similar strategy
was used in ([14, 15]) to boost multiple base-classifiers with asymmetric misclassification
costs. [14] described three variations of cost-sensitive boosting, each of which used a cost
factor to modify examples’ weights. [16] introduced “acceleration” to the weight updating
rule. The weight of a costly example receives greater increment when it is misclassified,
and decreases less otherwise. [17] treated the misclassified minority examples and majority
examples differently and proposed a confusion matrix-based weight to account for various
difficulties in classifying rare classes.

Among the boosting methods for learning from IDS, sampling strategies have been
heavily explored to create balanced training data sets. [18] introduced SMOTEboost
that generated synthetic minority examples using SMOTE strategy during training. [19]
combined boosting and data generation and introduced the DataBoost-IM method, where
hard-to-classify instances from both majority and minority classes were identified and
used to generate synthetic examples. A similar idea of creating synthetic examples was
also employed in E-Adsampling algorithms ([20]). Comparedto DataBoost-IM, which led
to the creation of a large number of synthetic minority examples, E-Adsampling faced
possible loss of the originally misclassified examples. [21] proposed RAMOBoost that
ranked minority examples during boosting iteration and created synthetic minority examples
based on a distribution function. Seiffert et al. proposed the RUSboost ([22]) that extended
the AdaBoost methods by using random under-sampling to select subsets of examples. It
was demonstrated that the performance of RUSboost was comparable to SMOTEboost.



4 X. Yuan and M. Abouelenien

Both cost embedding and sampling strategies improve binaryclassification
using imbalanced training data. Extending to multi-class boosting, however, is not
forthright ([12]). In addition, in the application of face recognition, many state-of-the-art
learning methods, e.g., LDA and Eigenface, produce stable classification results which abate
the driving force of boosting strategy: diversity ([23]). Our proposed multi-class boosting
method addresses the problems of learning from imbalanced data and enabling employment
of stable learners in the ensemble.

3 Multi-class Boosting for Learning from Imbalanced Data

In a multi-class classification problem, let the number of classes beK. The labels can then
be encoded with values1 and− 1

K−1 . For example, for an instancexi that belongs to class
2, its label is expressed as{− 1

K−1 , 1,−
1

K−1 , . . . ,−
1

K−1}
T , where the value of the second

component of the vector is 1 indicating that this example belongs to class 2 and the rest are
− 1

K−1 .
Directly extending AdaBoost to address multi-class, imbalanced problems fails due to

the stringent constraint on the performance of the weak learner ([24, 11]). Given a multi-
class data set, it is reasonable to assume equal probabilityfor a random guess to label an
instance to one of theK classes. Hence, the expected error is1− 1

K
. The empirical errorǫ

can then be expressed as the average error over all classes:

ǫ =
1

M

K
∑

j=1

(

Mj
∑

i=1

K − 1

K
) (1)

whereMj is the number of examples in classj andM =
∑

j Mj .
Provided with a multi-class, imbalanced data set, a classifier trained with an imbalanced

data set could result in greater generalization error than aclassifier trained with a balanced
data set due to the dominating number of examples in the majority classes ([6]). Following
the same error minimization strategy, the classifier yieldsinto the region of the minority
class. Clearly, the cause of the suboptimal classifier is theuneven number of examples in
the class overlap. Ideally, if the balance is restored in this region, the bias will diminish.

Another issue arises from stable learners that are frequently used in face recognition
applications. For instance, Eigenface method constructs asubspace from the training
examples and a face recognized by finding the nearest neighbor in the projected subspace.
Hence, when a data setS is used to train such a face recognizerf(x), the evaluation error
over setS is close to zero. Knowing that the weight update is driven by error, we can expect
little, if not zero, changes in the weights for the next training round.

To address both issues of uneven data size induced bias and stable learner, we propose
a multi-class boosting method (multiBoost.imb). Our method is presented in Algorithm 1.
In multiBoost.imb, we introduce a perturbation strategy that selects a subset of examples
from the majority classes according to the data distribution. The selected examples and the
minority examples form a training set. Let|SI | denote the smallest class size. Following
the data distributionwi (wi : (xi,yi) ∈ SA), a subset of examples from each majority class
SA, denoted withS′

A, is randomly selected so that the size of this subset equals the size
of the minority class, i.e.,|S′

A| = |SI |. The selected majority examples and the minority
examples form a subsetS′ for training a weak learner:

S′ = {∪SIp ,∪S
′
Aq

} and|S′
Aq

| = |SIp |, (2)
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wherep is the index of the minority classes andq is the index of the majority classes.SIp

denotes the set of examples in the minority classp; S′
Aq

denotes the subset of examples of
the majority classq. The changing subset of training example ensures the construction of a
group of diverse classifiers even with stable weak learners.In addition, the equal number of
examples that represents all classes suppresses the influence of the IDS to the construction
of a classifierf t.

Unlike the training process, the entire data setS is used in the evaluation of each classifier
f t. This is necessary because not only the data distribution needs to be updated, but also the
weightαt to the classifierf t has to be consistent to the overall performance of the learner.
Without the knowledge of the underlying true data distribution and hence the overlapped
regions among classes, empirical error is a reasonable metric.

The weightαt determines how much a learnerf t contributes to the final decision as
shown in Eq. (6). Given an IDS, the great empirical error of anunbiased learner results in a
smaller weight assignment. In fact, as training continues,the examples within the overlapped
regions are likely to have greater probabilities. To suppress possible over-weighting the
biased classifier, an attenuation factorγ (γ ≥ 1) is included in the weight calculation
(see Eq. (4), which are more likely to happen in the later stage of the training. Largeγ
subsides the impact of empirical errorǫt. Whenγ = 1 the weight calculation reduced to
AdaBoost.M1 ([7]); whereas whenγ = K − 1 the weight becomes that of the SAMME
algorithm in ([11]).

Assuming that classifiers are trained independently, the majority voting of an ensemble
should lead to better results than using a single classifier ([24]). This suggests that the weight
of classifiers that perform better than random guessing should be positive. Hence, the ratio
γ(1−ǫ)

ǫ
has to be greater than one. Following this assumption, the maximum acceptable

error rate for a weak learner is bounded by

ǫ <
γ

γ + 1
. (7)

In contrast to AdaBoost, the inclusion ofγ improves the error tolerance. If we relax our
requirement of the error rate of the weak learners to be equivalent to that of the random
guess, i.e.,

ǫ =
K − 1

K
, (8)

combining with Eq. (7) results in the upper bound forγ, i.e.,

γ = K − 1. (9)

Hence, the choice ofγ lies in the range of[1,K − 1].
The multiBoost.imb method updates data distribution following the exponential function

as shown in Eq. (5). Given that the class label is encoded as a vector that consists of 1 and
−1

K−1 ([11]), where the index of 1 indicates the class label, the dot productyif(xi) yields
one of the following two values:

yif(xi) =

{

K
K−1 if xi is correctly classified
−K

(K−1)2 if xi is misclassified
(10)
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Algorithm 1 MultiBoost.imb
1: Input: an imbalanced data set that consists ofp minority classes andq majority classes:S =

{∪SIp ,∪SAq}.
2: Initialize the weightwi for each(xi,yi) with 1

M
.

3: for t = 1, 2, . . . , T do
4: Construct a training setS′ following Eq. (2).
5: Train a classifierf t usingS′ such that error is minimized.
6: Compute error off t using the entire data setS:

ǫ
t =

M∑

i=1

w
t
iJf

t(xi) 6= yiK (3)

whereJ·K is the indicator function that returns 1 if the argument is true.
7: if ǫt ≥ γ

1+γ
, then stop and setT = t− 1

8: Compute the weightαt for f t:

α
t = log

γ(1− ǫt)

ǫt
(4)

9: Update and normalize data distribution

w
t+1
i =

wt
ie

−
1

2
αt

yif
t(xi)

W t
, (5)

whereW t =
∑

i w
t
i .

10: end for
11: The ensembleF (x) aggregatesf t by maximizing the weighted sum:

F (x) = argmax
k

(
T∑

t=1

α
t
f
t(x)) (6)

wherek ∈ [1, . . . ,K].
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It is clear that the update towi of a misclassified instance is smaller than that of a correctly
classified instance. The gradually increasedwi of a misclassified instance is consistent
with the relaxed constraint on the error rate. Hence, it prevents over emphasizing the large
number of misclassified majority instances.

Given that the normalized data distributionwi sums to one, we can express the sum of
the data distribution as follows:

∑

i

wt+1
i =

∑

i

wt e
−αt

yif
t(xi)

W t
=

1

ZM

M
∑

i=1

t
∏

s=1

e−αs
yif

s(xi)

=
1

ZM

M
∑

i=1

e−yi

∑t
s=1

αsfs(xi) =
1

ZM

M
∑

i=1

e−yif
∗(xi) = 1.

where W t is a normalization factor andZ =
∏t

s=1 W
s. Hence, the product of the

normalization factor equals to the normalized sum of weightupdates following AdaBoost:

Z =
1

M

M
∑

i=1

e−yif
∗(xi) (11)

wheref∗(xi) =
∑t

s=1 α
sfs(xi) is an intermediate ensemble.

When an instance is misclassified, i.e.,Jf t(xi) 6= yiK = 1, the functione−yif
∗(xi) >

1. Together with Eq. (3), we have the upper bound of the error asthe product of the
normalization factorsǫ ≤

∏

s

W s.

To find appropriateα, we minimize this error bound
∏

s W
s. Following the definition

of W t, we have
∏

s

W s =
∏

s

(
∑

i

wt
ie

−αt
yif

t(xi)) (12)

Notice thatyif
t(xi) results in two values as shown in Eq. (10), which is equivalent

to
1

2
f t(xi)f

t(xi)λ(h
∗(xi)− q), wheref t(xi)f

t(xi) =
K

K−1 andq is a threshold. That is,

the product of the true label and classification result is expressed as functionλ2 (q − h∗(xi))
that gives the following results:

λ

2
(h∗(xi)− q) =

{

1 if xi is correctly classified
−1

(K−1) if xi is misclassified

whereh∗ outputs1 or−1whenxi is classified correctly or incorrectly;λ is the inverse of the
uninformative error rate, i.e.,λ = K

K−1 ; q sets the threshold for deciding weight changes.
Hence, combining with Eq. (8), we have

yiyiλ = f t(xi)f
t(xi)λ = 1/ǫ2.

Based on the convexity of the exponential functions, the error upper bound in Eq. (12) is
expressed as follows:

∏

s

wt
ie

−αtft(xi)f
t(xi)

λ
2
(h∗(xi)−q =

∏

s

wt
ie

−αt 1

ǫ̃2
(h∗(xi)−q)

≤
∏

s

∑

i

wt
i(h

∗(xi)e
−αt 1

ǫ̃2
(1−q) + (1− h∗(xi))e

αt 1

ǫ̃2
q)

.
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Taking the first derivative with respect toαt and setting it to zero, we have the expression
of αt:

αt = ln
γ(1− ǫ)

ǫ
(13)

whereγ = 1−q
q

.
Note that, in training a classifier, only a portion of examples from the majority classes

are used. Hence, the error minimization is in the context of asubset of balanced training
examples. However, theα given in Eq. (13) is subject to the entire training data set, which
accounts for the entire data set.

4 Experiments and Discussion

4.1 Experiment Settings

We employed the Eigenface ([25]) and Fisherface ([26]) for face recognition and use four
public face databases. The AT&T data set consists of 40 subjects with 10 images for each.
The AR face database consists of 126 subjects (among which weused 50 to be consistent
with the other two face data sets) and 11 images were cropped for each subject. The Yale
database consists of 38 subjects and 65 images for each. LFW has more than 13,000 face
images of over 5,000 subjects. The majority of the subjects have less than three images. In
our experiments, we used the LFW images aligned with deep funneling method ([27]) and
randomly selected 40 subjects, each of which has at least 20 images such that we can form
different imbalance ratios and perform cross validation.

To simulate imbalanced training data, half of the classes (or subjects) were used as the
majority classes, and the other half were treated as the minority classes. By re-sampling the
data sets, we created training data with various imbalance ratios. The average performance
of the leave-one-out cross validation serves as the baseline in our studies.

Cross-validation was used. Depending on the data set size, the number of folds varies.
For example, AT&T database consists of 40 subjects. In the experiments of learning from
imbalanced data set with imbalance ratioβ = 2, five examples of each subject from 1
through 20 were randomly selected, and the other five were used as testing examples.
Subjects 21 through 40 were treated as the majority classes and, based on the imbalance
ratio, ten examples were used for each subject in the training. The majority and the minority
classes were switched in another experiment. Experiments were designed to reveal the
effects of IDS with respect to the imbalance ratio and the difficulty of the problems. We
focused on the evaluation of classifying the minority classes since that is the origin of most
errors.

State-of-the methods were used in our comparison study. Extension of SMOTEboost
for multi-class problem was developed based on AdaBoost.M2. In our initial study
that follows this extension ([18]), it took more than 24 hours to complete the training
of one SMOTEboost ensemble of 10 base learners and the performance is no better
than SMOTEboost using AdaBoost.M1 framework. Hence, the results reported in this
comparison study for SMOTEboost is based on AdaBoost.M1. RUSboost, on the other
hand, was developed for binary-class classification. For the comparison purpose, we extend
it again following the spirit of AdaBoost.M1. We also limit our ensembles to 10 base learners
due to great time expense for cross-validation.
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Table 1 The average error rate and standard deviation of multiBoost.imb with imbalanced face
data sets.

Data Average Error Rate (%)
AdaBoost multiBoost RUS SMOTE SAMME SAMME

Sets Si (β) Base .M1 SAMME .imb boost boost +RUS +SMOTE

Eigenface
AT&T 5 (2) 2.5 10.0 10 8.8 9.5 8.8 9.5 8.8

(6.3) (16.8) (16.8) (14.5) (15.2) (14.2) (15.2) (14.2)
2 (5) 22.9 22.9 18.1 18.5 20.9 19 20.9

(18.3) (18.3) (15.9) (15.6) (16.6) (16.3) (16.7)
AR 5 (2) 19.5 27.4 27.4 25.1 25.6 25 25.6 25

(15.0) (29.5) (29.5) (29.1) (28.7) (29.7) (29.3) (29.7)
2 (5) 49.4 49.6 40.8 41.5 47.6 41.9 47.5

(20.2) (20.2) (19.7) (21.5) (20.6) (19.6) (20.5)
Yale 32 (2) 28.5 76.9 76.8 75.1 75.7 76.2 75.2 76.3

(10.2) (7.2) (7.2) (6.4) (6.9) (6.9) (6.8) (7.2)
8 (8) 88.9 88.9 82.4 84.1 88.1 84.9 88.2

(3.5) (3.5) (3.5) (3.6) (3.3) (3.6) (3.5)
LFW 5 (2) 83 90.5 90.5 88.6 89 81.8 88.4 81.1

(12.2) (10.2) (11.6) (12.7) (11.9) (13.6) (12.4) (13.2)
2 (5) 95 95 87.5 97.5 94.9 89.4 94.9

(4.8) (4.8) (7) (15.8) (4.8) (6.2) (4.8)
Fisherface
AT&T 5 (2) 2 14.3 14.3 10.8 10.8 13.8 9 13.8

(4.1) (20.6) (20.6) (18.2) (17.6) (22.4) (15) (22.4)
2 (5) 40.7 40.7 16.3 16.3 35.9 18.4 36.2

(22.9) (22.9) (14) (13.8) (22.6) (14.7) (22.2)
AR 5 (2) 2.8 30.8 30.8 18.6 17.2 30.2 18.6 30.2

(5.7) (32.5) (32.5) (25.1) (25.9) (29.2) (26.3) (29.2)
2 (5) 46.3 46.3 17.6 17.8 40.3 20.3 40

(22.1) (22.1) (16.7) (16.9) (21.1) (17.1) (22)
Yale 32 (2) 4.6 31.4 31.4 28.1 29.9 29.6 35.5 29.7

(2.5) (13.1) (13.1) (12) (11.9) (12.3) (12.5) (12.9)
8 (8) 58.7 58.7 59.2 60.1 50.7 63.5 50.8

(8.4) (8.4) (7.3) (7.3) (8.5) (6.3) (7.9)
LFW 5 (2) 66 84.5 84.5 69.1 69.5 86.1 71.4 84.5

(18.9) (16.4) (16.4) (21.3) (21.2) (16.8) (20.2) (16.4)
2 (5) 97.5 97.5 84.1 96.3 96.7 84.7 96

(5.6) (5.6) (11.9) (15.8) (6) (11.5) (5.7)

4.2 Performance Analysis

In our performance analysis, we focus on classification of the minority classes under
different imbalance ratios since the minority classes are usually the important ones in a FR
problem. Table 1 summaries the average error rate (across all classes in each data set) for the
testing scenarios. The standard deviation is included in the parenthesis. Since the baseline
is the best result using leave-one-out cross-validation, there is only one baseline error for
each data set. The bold face font highlights the best averageperformance in each case.
Among all scenarios, multiBoost.imb achieved 4 best performance out of 8 low imbalance
ratio cases (four data sets with two different base learners) and 7 best performances out of 8
higher imbalance ratio cases. The maximum improvement as compared to the second best
performance among all other methods is 12.8% in the high imbalance ratio cases and 8% in
the low imbalance ratio cases. It is worth of noting that withlow imbalance ratio, i.e.,β = 2,
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multiBoost.imb achieved highly competitive results against the baseline performance using
both base learners.

Clearly, imbalance affects base learners differently. It is interesting to note that AT&T,
AR, and Yale are fairly easy cases when Fisherface is appliedto the balanced data sets. The
average error rates of the baseline performance as reportedin Table 1 are 2%, 2.8%, and
4.6% for AT&T, AR, and Yale, respectively. However, if the training data is imbalanced,
ensembles using Fisherface as base learner degrade significantly in their performance.

It is evident that our proposed method multiBoost.imb achieves better results when
the imbalance ratio is higher. In contrast to the low imbalance ratio, multiBoost.imb also
achieved better performance with a couple of classes compared to the baseline. It is worth
noting that RUSboost failed to create an effective classifier ensemble in the higher imbalance
ratio with LFW data set. RUSboost mostly ignored all subjects except one in the case of
LFW data set withβ = 5. However, when we combined the random undersampling with
SAMME, the performance improved greatly.

Among all other methods, the combination of SAMME with SMOTEsampling method
yielded competitive performance in low imbalance ratio cases (4 out of 8 cases). It is
interesting to note that SAMME with SMOTE exhibited even lower average error rate
compared to the baseline with slightly greater STD. Although RUSboost and SMOTEboost
have very close average error rate in high imbalance ratio with LFW data set, the performance
of SMOTEboost is better than RUSboost.

4.3 The Attenuation Factor

One key parameter in our proposed method is the attenuation factorγ. Besides the benefit
it introduces to relax the error upper bound for each learnerand, hence, avoids early
termination, it contributes a constant addition to the learner weight, which diversifies the
ensemble. However, with largerγ, the ensemble becomes less likely to terminate due to the
relaxed error upper bound. So it is important to find the appropriate values forγ.

We studied our method by varyingγ value from 1 to2K, and the experiment using the
combination of each data set and aγ value is repeated 6 times. Both KNN and decision trees
are used as the base learner and the imbalance ratio include low ratio value, i.e.,β = 2 and
high ratio values (β = 5 for AT&T and AR andβ = 8 for Yale). The average error rate of
the ensemble with different base learner varies fairly greatly. Depending on the cases such
difference can be up to 40%. Also, the imbalance ratios result in performance margin in the
range of 10%. Hence we use the average error rate improvementas an indicator to reveal
the trend ofγ. In calculate the improvement rate, we use the error rate with γ = 1 as the
base.

Fig. 1 depicts the average error rate improvement. Because the number of classes in
each data set differs, the range of each curve varies accordingly. The results withγ = K is
marked with an enlarged double-line symbol in red. Whenγ = 1, multiBoost.imb degrades
to AdaBoost.M1, and whenγ = K − 1, multiBoost.imb becomes SAMME. It is clear that
whenγ = 1 all base learners and ensembles result in the greatest errorrate. Asγ increases,
the error rate reduces. This trend continues even beyondK − 1. At γ = 2K, the error rate
remains relatively small with little fluctuation fromγ = K − 1. However, it is clear that
the error rate gives suboptimal results whenγ = K − 1. The best performance is mostly
achieved when the attenuation factor is in the range of (1, K-1). Clearly, an attenuation factor
that is far greater than K-1, however, does not result in significantly degraded performance.
This is in part because the weight (or the contribution ratio) of the base learner becomes
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Figure 1 The average error rate with respect to the attenuation factor. The double-line symbols
highlight the average error rate withγ = K.

less dependent on the learner performance but the attenuation factor. That is, the ensemble
becomes a collection of equally weighted weak learners trained with subsets of examples.

Table 2 The average training time in seconds.

Base Data β AdaBoost SAMME multiBoost RUSboost SAMME
Learner sets .M1 .imb +RUS

Eigenface AT&T 2 27.59 26.04 25.93 25.92 17.14
5 19.66 19.73 11.88 11.81 7.42

AR 2 48.07 43.95 48.48 48.66 31.61
5 36.87 32.66 19.04 19.27 10.39

YALE 2 38.34 36.05 38.24 37.34 31.31
8 30.17 32.34 13.96 13.75 8.83

LFW 2 68.71 68.9 50.57 52.18 37.87
5 50.22 47.96 24.28 22.59 13.99

Fisherface AT&T 2 37.21 34.07 32.66 32.51 23.34
5 27.57 27.56 18.43 18.45 13.06

AR 2 56.38 56.33 55.19 55.08 43.52
5 44.05 45.08 27.49 27.36 18.78

YALE 2 56.67 55.62 52.91 55.08 46.99
8 59.63 47.66 20.99 21.95 15.57

LFW 2 91.66 82.69 62.3 61.66 48.14
5 56.74 59.33 31.55 28.92 20.67

4.4 Efficiency Analysis

Table 2 and 3 present the average training time. For SMOTEboost and SAMME with
SMOTE sampling, we recorded both the sampling and learning times. Between two base
learners, there is no significant difference in efficiency although Fisherface based methods
took slightly longer time in comparison to Eigenface based methods.

Because less number of examples used to train each base learner, undersampling based
methods took much shorter time to complete model creation. Data resampling takes time,
which is trivial compared to the learning time, and we reportthe sampling and training
times together. The maximum undersampling time is less than5 seconds. Compared
to AdaBoost.M1 and SAMME, multiBoost.imb, RUSboost, and SAMME with random
undersampling used almost equivalent amount of time in the low imbalance ratio cases and
about 50% less amount of time in the high imbalance ratio cases. The slight advantage
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Table 3 The average training time in seconds.

Base Data β SMOTEboost SAMME+SMOTE
Learner sets learning sampling learning sampling

Eigenface AT&T 2 35.14 1.62 33.85 3.5
5 39.09 628.08 39 630.07

AR 2 65.61 2.94 70.3 3.02
5 83.51 1026.04 64.69 1004.94

YALE 2 51.92 2.90 46.10 2.97
8 44.64 372.58 43.35 368.02

LFW 2 91.07 2.93 96.29 3.31
5 121.71 126.24 117.92 126.41

Fisherface AT&T 2 46.16 1.65 47.71 1.72
5 51.13 629.73 58.46 641.88

AR 2 82.85 2.96 82.51 3.01
5 82.07 1002.49 79.85 1005.34

YALE 2 62.52 3.02 58.36 3.01
8 53.12 365.97 60.28 372.58

LFW 2 110.61 2.97 117.54 3.09
5 140.91 126.01 126.05 126.17

in efficiency of undersampling based method comes from its simplicity. That is, random
undersampling during training iterations is independent and no training history is consulted.

On the other hand, oversampling based methods, e.g., SMOTEboost and SAMME with
SMOTE, clearly require a significant amount of time, especially when there is a high
imbalance ratio, to resample the training set. The samplingtime can take as high as 94% of
the overall training time. Even without considering the sampling time used in SMOTEboost
and SAMME with SMOTE, the learning time was much greater due to larger number of
training examples.

Comparing time used for all face data sets, we can see that theincrement of time in high
imbalance ratio case is less dramatic. This is because each face example consists of more
than ten thousands features. The high dimensionality requires significantly more time in
training. When the imbalance ratio is low, this time for SMOTEboost is relatively small (in
the order of 3 seconds). However, in the case of large imbalance ratio, the time cost to create
new artificial examples is substantial for SMOTEboost. The exponential time increment
makes SMOTEboost a less attractive method to handle highly imbalanced, high-dimensional
problems.

5 Conclusion

In this article, we propose multiBoost.imb method that greatly improves the performance
to learn from imbalanced data without relying on user introduced bias. Experimental
results demonstrated that the error rate of multiBoost.imbis consistently lower than that of
AdaBoost.M1. The advantage becomes more apparent when the imbalance ratio enlarges.
In some cases our method achieves even lower error rates beyond that of the baseline
model, which is trained with all available examples. With our downsampling strategy, stable
classifiers such as Eigenface can be employed as the base learner in an ensemble. Our
studies of the attenuation factor show that the best performance is mostly achieved when
the attenuation factor is within the range of (1, K-1). An attenuation factor that is far greater
than K-1, however, does not result in significantly degradedperformance.
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The comparison study was conducted with respect to the state-of-the-art sampling-based
ensemble methods for imbalanced data sets. When learning from balanced data sets or ones
with low imbalance ratio, the performance of the compared methods is similar. However,
the improvement is substantial when imbalance ratio is high. In contrast to underampling
based methods, multiBoost.imb takes much less number of training iterations to achieve a
performance that takes RUSboost many times more iterationsto attain. Efficiency analysis
shows that multiBoost.imb and random undersampling based methods demonstrated similar
efficiency given the same number of base learners while oversampling based methods
exhibited a poor efficiency due to the excessive amount of time used to create and train
with the additional synthetic examples. In the cases of large imbalance ratio, the extra time
it takes SMOTEboost to create the training time increases exponentially, which makes it a
less attractive method to handle highly imbalanced, high-dimensional problems.
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