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13.1 Introduction and Motivation
Deception is defined as an intentional attempt to mislead others [Depaulo et al.
2003]. Deceptive behavior ranges from simple harmless lies to major threats. The
detection of such behaviors has been receiving increased attention from differ-
ent research communities, including computer vision, psychology, and language
processing, as deception permeates almost every human interaction and can have
costly consequences. Additionally, there exists an international interest in detect-
ing deceivers due to the alarming security incidents that occurred in the recent
years. For example, airports are places where detecting deception is vital. Terrorists
can deceive customs and borders interviewers and conceal essential information
that could be life-threatening. Another example can be seen in the court of law.
Thousands of trials occur daily where juries have to take on serious decisions that
can affect the lives of suspects and victims based not only on evidence, but on hu-
man judgment as well [Fornaciari and Poesio 2013a].

Applications such as security, business, and criminal investigation triggered re-
search interest in different fields. Existing methodologies rely mainly on polygraph
tests that extract physiological measurements such as heart rate, respiration rate,
skin conductance, and skin temperature. This approach had proven to falsely ac-
cuse the innocent and free the guilty in multiple cases. Employing polygraph tests
was shown to be unreliable in many cases as it requires decisions from human ex-
perts, which is subject to bias and error [Derksen 2012, Gannon et al. 2009]. Reports
dating back three decades indicated that polygraph results were false one third of
the time [Lykken 1984].
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Multiple factors can affect the reliability of polygraphs such as the fear of being
perceived as deceptive and the anxiety about being tested [Council 2003]. Fur-
thermore, with the appropriate training, suspects can easily fake innocence using
specific countermeasures [Ganis et al. 2011], such as lying in the pre-test questions,
muscle tensing, or tongue biting.

An existing problem with evaluating polygraph testing is that the quality of the
data available for evaluation is relatively low [Council 2003]. However, an evaluation
attempt was conducted using 59 datasets collected during different decades from
57 studies (52 laboratory, 7 field) including 3,681 polygraph examinations. The
study reported a wide range of accuracy index values starting from approximately
0.5 to more than 0.95 for the 52 laboratory studies and from approximately 0.7 to
1 for the field studies. As a result of the unreliability of polygraph testing, the U.S.
Supreme court acted to restrict their use in legal proceedings in 1998.

As detecting deceit has expanded to other applications such as social me-
dia, interviews, online transactions, and deception in daily life, alternative ap-
proaches were proposed in order to improve the reliability of deception detection
systems [Granhag and Hartwig 2008]. In particular, physiological, psychological,
visual, linguistic, acoustic, and thermal modalities have been analyzed in order to
detect discriminative features and clues to identify deceptive behavior [Owayjan
et al. 2012, Pfister and Pietikäinen 2012, Hillman et al. 2012, Zhou et al. 2013,
Rajoub and Zwiggelaar 2014, Feng et al. 2012].

Linguistic features were usually extracted from the language, words usage, and
consistency of the statements made by a person [Howard and Kirchhübel 2011, Vrij
et al. 2010, Mihalcea and Strapparava 2009b]. Visual clues of deception include
facial emotions, expression intensity, hands and body movements, and microex-
pressions. These features were shown to be capable of discriminating between
deceptive and truthful behavior [Ekman 2001, Owayjan et al. 2012]. The psychol-
ogy of lying using non-verbal and verbal characteristics was analyzed to identify
deception clues [Vrij 2001]. Deception was also detected by observing increased
activity in the nervous system that were determined using physiological measure-
ments, such as heart rate, blood pressure, skin conductance, and respiration rate.
The physiological aspect of the human body was expanded in terms of the thermal
variations that occurred in the faces and specifically in the periorbital areas as a
person acted deceptively [Shastri et al. 2012, Pavlidis et al. 2012]. Acoustic features
took into account the pitch and speaking rate, among other measurements, to spec-
ify whether or not certain features are associated with an act of deceit [Hirschberg
et al. 2005].
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Recently, multimodal analysis has gained a lot of attention due to their supe-
rior performance compared to the use of individual modalities [Pérez-Rosas et al.
2015b, Abouelenien et al. 2016a, Abouelenien et al. 2015a].

Chapter 6 presented an overview on multimodal approaches for affect recogni-
tion tasks. In the deception detection field, several multimodal approaches have
been suggested to improve deception detection by integrating features from dif-
ferent modalities including thermal and visual data streams [Abouelenien et al.
2014, Abouelenien et al. 2015b, Abouelenien et al. 2016b]. This integration created
a more reliable system that is not susceptible to factors affecting sole modalities
and polygraph tests such as the fear of being caught in a lie, stress from daily re-
sponsibilities, and tiredness.

In order to be able to develop improved deception detection systems, deception
data needs to be collected and evaluated. There are two ways to collect data, either
using a lab-setting [Abouelenien et al. 2014] or using real-life data [Pérez-Rosas
et al. 2015a, Pérez-Rosas et al. 2015b]. While earlier work relied on polygraph tests
and manual human efforts, most of the work proposed for automatic deception
detection relies on crowdsourcing or artificial acted data. Only recently, automated
techniques were proposed to detect deceit from real-life scenarios such as court
trials and TV interviews.

These strategies have different strengths and weaknesses that need to be evalu-
ated according to the research hypothesis. Observing deceptive behavior in natural
settings allows for the collection of spontaneous and real-life responses, particu-
larly during high stake scenarios. However, this type of data lacks the choice and
availability of the modalities to be used and hence misses multiple features. On the
other hand, simulated data allows for the use of multiple pre-determined modali-
ties and scenarios, but instead has lower stakes and subjects are less motivated to
elicit a deceptive response as compared to real-life situations.

This chapter will overview the state-of-the-art in multimodal deception detec-
tion, covering physiological (e.g., physiological sensors and thermal imaging), visual
(e.g., facial expressions and gestures), speech (e.g., pitch and pause length), and
linguistic modalities. We will describe the features that are typically extracted from
each of these modalities, as well as means to combine these modalities into an over-
all system that can detect deception in multimodal content. We will cover methods
that make use of lab recordings, as well as methods that rely on real-life data (e.g.,
recent work on multimodal deception detection from trial data).

A terminology of the terms commonly used through the chapter can be found
in the Glossary



422 Chapter 13 Multimodal Deception Detection

Glossary

Feature-level multimodal fusion. The process of integrating features from different
modalities using diverse methodologies such as concatenating the features together
(early fusion) or combining the models obtained from each modality at decision level
(late fusion).

Leave-one-out cross validation. Cross validation is the process of dividing a dataset into
batches where one batch is reserved for testing and all the other batches are used for
training a system. Leave-one-out means each batch is formed of a single instance.

Physiological sensor. A device that uses a transducer and a biological element to collect
physiological responses, such as heart rate and skin conductance, and convert
them into an electrical signal. The measures obtained with such devices provide
quantitative feedback about physiological changes or processes experienced by
research subjects.

T-unit analysis. The analysis of terminable units of language (T-unit), which is the
smallest group of words that could be considered as a grammatical sentence,
regardless of how is punctuated. T-unit analysis is used extensively to measure
the overall complexity of both speech and writing samples and consists mainly on
measuring different aspects of their syntactic construction in text such as mean
length of the t-units, and number of clauses present in each unit, among others.

13.2 Deception Detection with Individual Modalities
Multiple approaches have been explored targeting the identification of decep-
tive behavior. These approaches can be roughly divided into verbal and non-
verbal [Henningsen et al. 2005] or into contact and non-contact approaches.

Earlier methodologies for detecting deceit, especially in law-enforcement, fell
mostly under the contact-based approaches and were focused on polygraph tests,
which use devices that measure responses from the nervous system [Vrij 2001]. In
particular, techniques relying on the extraction of physiological and biological mea-
surements, such as skin conductance and heart rate, fell under this category. With
the limitations of the invasive contact-based methods, which included the need
of physically attaching devices to the subject’s body to measure a given response,
and also require human interpretation, deception detection research shifted to-
wards non-contact, non-invasive methods. Among others, non-contact approaches
include the development of verbal and acoustic, psychological, and physiological,
visual, and thermal techniques.
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In the following sections we provide an overview of research work conducted
from different research fields, using both verbal and non-verbal approaches, to-
ward building automatic and reliable systems for deception detection.

13.2.1 Psychology
Initial explorations on deception detection were conducted in the psychology do-
main, where researchers examined lying and lie detection phenomena in search
of behavioral cues to deception. These studies focused on the micro and macro
analysis of verbal and non-verbal exchanges between the deceiver and the lie de-
tector [Zuckerman et al. 1981]. Psychology researchers posed questions related to
deceiver’s self-presentation such as: will their faces be prone to leakage by showing
exaggerated or suppressed facial expressions? Will their voices be louder, slower or
faster? Furthermore, which are the thoughts, feelings, or physiological processes
that are more likely to occur when people are lying compared to when they are
telling the truth? For instance, to what extent do liars show behaviors than indicate
guilt and fear as compared to truth tellers? Are deceivers more fearful as the stakes
becomes higher? The reader can find a more detailed discussion in DePaulo [1992].

To answer these questions, multiple approaches were explored focusing on four
aspects.

1. Control: deceiver’s attempted behavior control that might appear planned,
rehearsed, and lacking of spontaneity.

2. Arousal: indicators of deceiver’s arousal responses such as pupil dilation, eye
blinking, and speech disturbances.

3. Felt emotion: markers of deceiver’s experience of negative or positive affect
including grooming, scratching, anxiety, evasive responses, among others.

4. Cognitive processing: indicators of cognitive load such as longer response
latency, hesitation, and fewer illustrators.

Depaulo et al. [2003] presents an extensive analysis of psychology work con-
ducted on deception detection exploring these factors and describe 158 cues to
deception compiled from over 120 independent samples. Results show that there
are indeed important differences among liars and truth tellers.

Motivated by these findings and the increasing access to larger amounts of ob-
servational data, researchers from study fields such as computational linguistics,
speech processing, computer vision, psychology, and physiology started explor-
ing the identification of deceit from a data-driven perspective. Thus, allowing ap-
proaching the identification of deceit by automatic means.
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For further reading, readers can refer to Chapter 10, which investigates mul-
timodal behavioral and physiological signals as indicators of cognitive load. In
particular, the chapter describes the integration of physiological features such as
galvanic skin response and visual aspects, such as eye-based features, which are
shown to be robust measures of cognitive load.

13.2.2 Language
The identification of deceit in written content has been addressed in a large number
of studies in the psychology and computational linguistics communities.

From the psychology perspective, several studies showed the relationship be-
tween people’s linguistic choices and deceptive behavior. Newman et al. [2003]
presented an examination of linguistic manifestations of falsehood in written sto-
ries. In this study, authors measured and tested several linguistic dimensions from
a set of linguistic categories that were previously found correlated to deception,
including self-references, negative emotion words, and markers of cognitive com-
plexity [Depaulo et al. 2003]. Using a text analysis tool called Linguistic Inquiry and
Word Count (LIWC) [Pennebaker and Francis 1999], a lexicon of words are grouped
into semantic categories relevant to psychological processes, including thoughts,
emotions, and motives, authors generated linguistic profiles of participants who
were either lying or telling the truth about different topics in different contexts.
Then, several regression models were built for each topic to test the discriminating
power of the different linguistic categories over deceptive and truthful samples.

Five scenarios were used in this study and each subject was asked to provide both
a truthful and a deceptive response in four scenarios. They were equally divided
into a deceptive and truthful groups for a fifth “Mock Crime” scenario, resulting in
an overall balanced population with a baseline of 50%. Using this method, authors
were able to identify deception with an overall accuracy rate of 61%. Further analysis
of word usage provided evidence of linguistic differences between truth-tellers and
liars. In particular, liars were found to use fewer first-person pronouns and more
negative emotions words than truth-tellers. On the other hand, liars seemed to use
third-person references at higher rates.

Work on computational linguistics initially attempted to replicate the findings
of psychological experimentation by applying computational approaches to distin-
guish between written samples of deceptive and truthful statements. [Mihalcea and
Strapparava 2009a] proposed a data-driven method to build classifiers able to dis-
tinguish between deceptive and truthful essays covering three topics: opinions on
abortion, opinions about death penalty, and feelings about a best friend. Data was
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collected via crowd sourcing and learning features consisted of counts of unique
words (unigrams) present in each deceptive/truthful essay. Authors presented ex-
periments using machine learning classifiers such as Support Vector Machines
and Naive Bayes. Results showed a clear separation between truthful and decep-
tive texts regardless of the topic being discussed. Further analysis identified salient
words on deceptive text using the LIWC and Wordnet Affect [Strapparava and Val-
itutti 2004] dictionaries and reported similar findings to Newman et al. [2003]. For
instance, deceivers used more references to others, i.e., third-person pronouns,
whereas truth-tellers showed preference for words connected to the self, i.e., I, my-
self. A similar study is presented in Feng et al. [2012], where authors focused on
applying syntactic stylometry techniques to identify deception in text from essays
and product reviews. Authors explore shallow and deep syntactic representations
derived from Probabilistic Context Free Grammar (PCFG) parse trees, such as part
of speech tags (POS), syntactic patterns encoded as production rules, as well as n-
gram representations. Experimental results showed significant performance gain
in deception detection when adding deep syntax information into the learning
process.

Computational linguistic approaches have also covered the identification of
deception on a variety of domains where computer-mediated communication hap-
pens, including chats, forums, online dating websites, social networks—e.g., Face-
book and Twitter—as well as product review websites that are prone to have fake
product reviews and spam content [Toma and Hancock 2010, Guadagno et al.
2012, Warkentin et al. 2010, Joinson and Dietz-Uhler 2002, Ott et al. 2011, Li et al.
2014].

In the product reviews domain, Ott et al. [2011] addressed the identification of
spam producers by analyzing linguistic patterns in deceptive reviews. Using a simi-
lar approach to Mihalcea and Strapparava [2009a], i.e, using n-grams and semantic
features derived from the LIWC dictionary, authors built accurate machine learning
classifiers that identified fake reviews with accuracies above the human baseline
performance (which was found slightly better than chance). This study showed that
automatic deception detection can be accurately conducted on the product reviews
domain and that humans are generally poor deception detectors for this task with
inter-annotator agreement scores in the range (0.00,0.20), which indicates “slight
agreement” between annotators. Interestingly, this study also showed that anno-
tators suffered from “truth bias,” a psychological phenomenon in which humans
judges tend to believe others thus making it more likely to classify information as
truthful rather than deceptive. Furthermore, authors found that features derived
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from LIWC are not as effective for building deception detection models in the prod-
uct review domain. In a following study, Ott et al. [2013] presented an analysis of the
sentiment associated to deceitful reviews focusing particularly in those containing
negative sentiment as it largely affects consumer purchase decisions.

Regarding studies that analyzed deception in online interaction, Yu et al. [2015]
analyzed the role of deception in online networks by detecting deceptive groups in a
social elimination-game; Toma and Hancock [2010] conducted linguistic analyses
in online dating profiles and identified significant correlation between deceptive
dating profiles, self-references, negations, and lower levels of word usage. Other
works have targeted the identification of deceptive behavior during face-to-face in-
teractions. A study focusing on deception aspects related to syntactic complexity in
children speech is presented by Yancheva and Rudzicz [2013], where authors exam-
ine the relation between speech syntactic complexity and children’s age. Authors
analyzed children’s verbal responses in short interviews regarding an unambiguous
minor transgression involving playing with a toy. Several linguistic features such as
readability index of the verbal statements, sentence complexity based on T-unit
analysis, and the use of passive constructions were evaluated to identify differ-
ences in the complexity of the language used by a child while either lying or telling
the truth. Results showed a clear association between the complexity of deceptive
speech and children’s age.

There have been also a number of efforts on exploring the deception detection
task in languages other than English. Almela et al. [2012] approached the deception
detection task in Spanish essays by using Support Vector Machine (SVM) classifiers
and linguistic categories, obtained from the Spanish version of the LIWC dictionary.
Fornaciari and Poesio Fornaciari and Poesio [2013b] examined deception in Italian
court cases. In this work, authors explore several strategies for identifying decep-
tive clues, such as utterance length, LIWC features, lemmas, and part-of-speech
patterns. Pérez-Rosas and Mihalcea [2014] presented a study that examined cul-
tural differences among deceptive and truthful essays written by English, Spanish,
and Romanian speakers. The authors addressed the deception detection task by
first building classifiers separately for each culture and then by conducting several
experiments across cultures. The authors proposed the use of automatic machine
translation and the LIWC version in each language to build deception classifiers
across-languages. Experimental results suggest important differences among cul-
tures and also the feasibility of using semantic information as a cross-lingual bridge
when deceptive data is not readily available for a given language. In addition, analy-
ses on word usage showed interesting findings such as shared lying patterns among
cultures including the use of negation, negative emotions, and references to others.
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Furthermore, truth-tellers related patterns are also shared among cultures, where
the most salient words were related to family, positive emotions, and positive feel-
ings.

Overall, techniques used for deception detection frequently include n-grams,
and word statistics such as sentence length, word type ratio, and word diversity. The
addition of syntactic information, i.e., a sentence’s grammatical structure, has also
been found useful to identify linguistic patters associated to deception. Semantic
information has been also a great source of information about the deceiver’s psy-
chological processes. In this category, LIWC and Wordnet Affect had been proved
as valuable resources to analyze deceivers’ word usage.

Finally, it is worth mentioning that learning resources for automatic decep-
tion detection are limited. Most of the research work in this area included a data
collection step using either manual or crowd sourced means. However, there is
an increasing number of research work that has directed their efforts to the con-
struction of deception resources [Gokhman et al. 2012]. Some deception corpora
publicly available include: a dataset on deceptive and truthful essays [Mihalcea and
Strapparava 2009a],1 and a fake hotel reviews dataset collected from trip advisor [Ott
et al. 2011],2 a fake product review dataset collected using Mechanical Turk [Li et al.
2014].3 In addition, there are a couple of deception datasets for languages other
than English such as a German deception dataset of product reviews [Verhoeven
and Daelemans 2014], a Spanish and Romanian essay dataset provided by Pérez-
Rosas and Mihalcea [2014] covering opinions about different topics such as death
penalty and abortion, and a Spanish essay dataset from Almela et al. [2012] that
includes topics such as homosexual adoption and bullfighting.4

13.2.3 Vision
Vision is the most common way people can detect liars as deception occurs on a
daily basis in human interactions. Visual body language was explored in order to
detect deceit. Spontaneous facial expressions and hand gestures were of special
interest due to their usage to express people’s emotions [Ekman 2001]. Using a
machine learning approach, these features are used to train a classifier for auto-
matic lie detection as well as multiple applications. More information on machine
learning approaches can be found in Chapter 1.

1. http://lit.eecs.umich.edu/~deceptiondetection/

2. http://myleott.com/op_spam/

3. http://www.cs.uic.edu/~liub/FBS/fake-reviews.html

4. Available from the authors upon request

http://lit.eecs.umich.edu/~deceptiondetection/
http://myleott.com/op_spam/
http://www.cs.uic.edu/~liub/FBS/fake-reviews.html
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Figure 13.1 An example of spontaneous expressions with a truthful response (left) and a deceptive
response (right).

Psychologists were interested in observing the expressions, movements, and
emotions that occur spontaneously and the ones the subjects aim at hiding. Micro-
and squelched-expressions were studied to specify whether or not they were asso-
ciated with an act of deception [Ekman 2001]. Microexpressions are involuntary ex-
pressions that last for a short period of time while squelched-expressions last longer
but are immediately changed into a different expression. The asymmetry, dura-
tion, and smoothness of these expressions were shown to vary as a person speaks
deceptively [Ekman 2003]. A publicly available database of micro-expressions was
published in Pfister and Pietikäinen [2012].5 A kernel-based method was integrated
in a temporal interpolation framework in order to extract clues of lies from the mi-
croexpressions in the dataset. Furthermore, geometric-based dynamic templates
were extracted from the video frames of the deception recordings to extract geomet-
ric measurements from microexpressions. Following this, multiple systems were
developed to detect visual features, facial expressions, and emotions that could in-
dicate deceptive behaviors [Bartlett et al. 2006, Pfister and Pietikäinen 2012]. An
example of spontaneous expressions can be seen in Figure 13.1.

In order to standardize the process, the Facial Action Coding System (FACS)
[Ekman and Rosenberg 2005] was developed by psychologists and behavioral sci-
entists. FACS provided taxonomy of facial features using muscle movements. Ex-
amples of these action units include inner brow raiser, nose wrinkle, lip raiser,
cheek raiser, chin raiser, eye widen, and others.6 Several attempts were made to

5. http://tomas.pfister.fi/

6. http://www.cs.cmu.edu/~face/facs.htm

http://tomas.pfister.fi/
http://www.cs.cmu.edu/~face/facs.htm
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code these gestures automatically for efficient detection of human behavior and
emotions. For instance, a real-time automated system to recognize spontaneous
facial expressions that was introduced to detect attempts of deception using FACS
can be found in Ekman and Rosenberg [2005]. Another example and one of the most
famous tools is the Computer Expression Recognition Toolbox (CERT7) [Littlewort
et al. 2011].

In addition to the action units, CERT provides 12 facial expressions such as yaw,
pitch, roll, smile detector, anger, contempt, disgust, fear, joy, sad, surprise, and
neutral. The software tool detects faces in each frame using Viola-Jones extension
in a boosting framework followed by specifying the eyes corners, nose, and mouth
corners and center. The algorithm determines the log-likelihood ratio of the pres-
ence of these regions in specific locations. Hence, the output of CERT consists of
the distance to the hyperplane of an SVM-trained classifier for each action unit,
which specifies the intensity of the facial actions. Using a combination of different
action units, the global facial expressions are determined.

It was reported that automatically detecting these action units and expressions
using CERT did not perform better than random guessing [Abouelenien et al.
2015b]. The performance was reported using a dataset that was collected in a lab-
setting using several scenarios. However, using feature selection, it was reported
that some of these features had potential of detecting deceit. The list consisted
of eight action units and six expressions, which provided the highest accuracy of
63%. The list included brow lowering, chin raising, cheek raising, lip puckering, eye
closure, distress brow, left turning AU 10, left AU 14, yaw, roll, contempt, disgust,
sadness, and neutral. Additionally, with the integration with features from other
modalities, the performance improved.

In order to detect visual features that more personalized to the subjects and
their individual differences, templates from the subjects’ video recordings were
extracted to determine the neutral baseline. This is followed by comparing the
deceptive and truthful responses to the neutral baseline to specify the differences,
which achieved an accuracy exceeding 60% for measurements such as the blinking
rates, head pose, and intensity of the facial expression [Tian et al. 2005].

Furthermore, using the visual modality, correlation between specific hand ges-
tures and deception were detected [Caso et al. 2006]. A noticeable decrease in
the frequency of gestures was observed when subjects narrated stories in a de-
ceptive manner compared to narrating the same stories truthfully [Cohen et al.

7. The CERT toolkit is no longer freely available. However, the CERT successor, The Facial Analysis
Toolbox, is available as a commercial toolkit at http://imotions.com/

http://imotions.com/
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(a) (d) (e)

(b) (c)

Figure 13.2 Physiological sensing system including (a) encoder, (b) skin conductance, (c) blood
volume pulse, (d) skin temperature, and (e) abdominal respiration sensors.

2010]. Additionally, individuals acting truthfully produced more rhythmic pulsing
gestures while those acting deceptively made more frequent speech prompting ges-
tures [Hillman et al. 2012].

13.2.4 Physiology
Physiological signals play a crucial role in monitoring human health as well as
detecting changes in human behavior. Chapter 5 discusses the theoretical founda-
tions of multimodal interfaces and systems in the health care domain, especially
multimodal interaction, distributing multimodal processing, and multisensory-
multimodal facilitation of health systems.

For lie detection, physiological measurements were traditionally collected from
sensors that were placed on the human body such as blood volume pulse (BVP
sensor), skin conductance (SC sensor), skin temperature (T sensor), and abdominal
respiration (BR sensor). An example of these sensors can be seen in Figure 13.2.
Biological measurements, such as brain waves detected by MRI scanners, were also
utilized as an indicator of deception [Kozel et al. 2004, Ganis et al. 2011]. The idea
was to observe the variations that occur in the measurements generated from these
sensors as the subjects shifted from truthful to deceptive responses.

Relying on such techniques were shown to have several shortcomings such
as falsely accusing innocent people of committing crimes and freeing guilty per-
sons [Vrij 2001, Derksen 2012, Gannon et al. 2009, Verschuere et al. 2009, Maschke
and Scalabrini 2005]. By using proper countermeasures the suspects could take
control of their physiological signals or manipulate the results. Improvements were
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made to the style of questions directed to the subjects to avoid potential errors
associated with polygraphs by using Guilty Knowledge Test (GKT) compared to
the widely used Control Question Test (CQT) [Taylor et al. 2010]. GKT is a multi-
ple choice form of questions that aimed at detecting concealed knowledge that a
suspect might be hiding. However, GKT still ran across multiple challenges that
could manipulate its performance [Carmel et al. 2003]. In an attempt to develop
more accurate methods to detect deceit, reaction time analysis in combination with
event-related brain potentials using electroencephalogram were used to identify
liars from a pool of 62 participants [Mohammadian et al. 2008]. The study reported
that bootstrapped analysis of reaction time method achieved 81.35% accuracy com-
pared to 80% accuracy for event-related brain potentials approach.

Alternative methods to improve deception detection rates were explored using
biological measurements, such as the functional magnetic resonance imaging
(fMRI) technology [Kozel et al. 2004]. Using fMRI, specific brain activity such as
an increased activity in the right anterior frontal cortices of the brain was observed
in the case of well-rehearsed lies [Ganis et al. 2003]. However, the employment of
such methodology in large-scale applications was unfeasible.

The physiological aspect of the human body was expanded in terms of the
responses of the nervous system and the changes in the blood distribution, which
could be detected using thermal imaging. The new approach targeted exploring
alternatives to the limitations and invasiveness of the polygraph tests. Pavlidis et
al. Pavlidis et al. [2002] developed a high-definition thermal imaging method to
analyze facial thermal reactions associated with deceptive responses determined
by the physiological signature of the faces. It was shown that as the nervous system
reacted with an act of deceit, a peripheral change in the blood flow distribution was
detected toward the musculoskeletal tissue [Pavlidis and Levine 2001, Pavlidis and
Levine 2002b]. Hence, bioheat transfer models that described the geometry and
anatomy of large blood vessels in the facial area were developed to analyze their
relation to deceit [Garbey et al. 2004].

Pavlidis and his collaborators noticed that the subjects exhibited elevated blood
flow in the orbital muscle area resulting in elevated temperatures in certain local
areas [Tsiamyrtzis et al. 2007]. They reported an overall accuracy exceeding 80% us-
ing two-class distinction; deceptive and non-deceptive. The system was compared
with the traditional polygraph test designed and implemented by the Department
of Defense Polygraph Institute, and was found to achieve equivalent result.

With further analysis, distinct non-overlapping facial thermal patterns were
detected with an increase in the blood flow around the eyes when subjects acted
deceptively. Hence, thermodynamic modeling was applied to transform the raw
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(a) (b) (c)

Figure 13.3 (a) A facial frame of the subject, (b) the periorbital area found to be the most indicative
of deceit with the 10% hottest pixels highlighted in pink, and (c) the region of interest
superimposed on the facial and ophthalmic arteriovenous complex. Image is provided
by Tsiamyrtzis et al. [2007]

thermal data from the periorbital area in the face to blood flow rates that had
the potential of indicating deceit. Figure 13.3 demonstrates the regions of interest
found to be most indicative of deceit.

Further experiments were conducted to improve the detection accuracy
achieved using thermal imaging. Tandem tracking and noise suppression methods
were used to extract thermal features from the periorbital area without applying
restrictions on the face movements of the subjects in order to improve deception
detection rates [Tsiamyrtzis et al. 2005]. Landmark detection systems were intro-
duced to track landmarks on the regions of interest in the facial areas to track
subjects as they lie [Jain et al. 2012].

Interestingly, a lie detection system was experimented in an airport using a set
of 51 travelers by extracting thermal features such as the maximum, minimum,
and average temperatures [Warmelink et al. 2011]. The system achieved accuracy
above 64%. However, trained custom interviewers were able to detect liars with an
accuracy exceeding 70%.

Other facial areas were additionally investigated in order to determine their ca-
pability of indicating deceit. A system for automatic blush detection was developed
while focusing on areas such as the cheeks to identify changes in the skin tempera-
ture [Harmer et al. 2010]. A potential importance of the forehead region in detecting
lies was suggested due to the presence of multiple blood vessels in this particular
area [Zhu et al. 2007, Zhu et al. 2008]. A comparison between different thermal facial
regions in the face illustrated that the forehead area provided features that achieved
improved performance compared to other regions [Abouelenien et al. 2015b]. An
example of segmenting the region of interest can be seen in Figure 13.4.
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Cropping
and masking

Binarization

Figure 13.4 An overview of the region of interest segmentation process including determining the
bounding box, cropping and masking, binarization, multiplication of the original and
binarized images, and isolation of the region of interest.

13.3 Deception Detection with Multiple Modalities
In search of more sophisticated lie detection systems, researchers explored mul-
timodal approaches where features from several modalities are integrated. These
approaches aim to avoid the uncertainty associated with the use of single modal-
ities, as well as the human efforts required for the analysis and decision-making
processes used in earlier approaches. Additionally, the integration of features from
different modalities enriches the dataset with information that is not available
when these modalities are used separately, which can be reflected in the overall
performance and the confidence level of the classifier.

For example, Henningsen et al. [2005] examined the classification of deception
cues into verbal and nonverbal, and how these cues influenced the perception of
deception. Burgoon et al. [2009] combined verbal and nonverbal features such as
speech act profiling, feature extraction, and kinetic analysis for improved decep-
tion detection rates. Jensen et al. [2010] extracted features from acoustic, verbal,
and visual modalities following a multimodal approach. Nunamaker et al. [2012]
provided a review of approaches for evaluating human credibility using physiolog-
ical, visual, acoustic, and linguistic features.

In the following section we provide an overview of research integrating multiple
modalities in order to detect deceit. We also present some of the used datasets,
extracted features, and evaluation results.

13.3.1 Thermal Imaging, Physiological Sensors, and Language Analysis
Recent work analyzed the combination of linguistic and thermal features
[Nunamaker et al. 2012]. A novel approach that integrated features from the ther-
mal, linguistic, and physiological modalities was presented in Abouelenien et al.
[2014] using data collected in a lab-setting environment. This research made two
important contributions. First, a new dataset was collected with the participation
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of 30 subjects. The subjects were asked to discuss two different topics in both
truthful and deceptive manners, while they were recorded using a microphone, a
thermal camera, and several physiological sensors. Second, a multimodal system
that integrated features extracted from three different modalities was developed
in order to automate and improve the detection of deceptive behavior, avoid hu-
man efforts and the limitations associated with individual methods, and increase
the efficiency of the decision making process. The research hypothesized that as a
person acts/speaks deceptively, there will be subtle changes in his or her physio-
logical and behavioral response, which can be detected using discriminant feature
extraction.

13.3.1.1 Dataset and Devices
Measurements were acquired in a lab setting using a thermal camera FLIR Ther-
movision A40 with a resolution of 340 × 240 and a frame rate of 60 frames per
second, as well as 4 biosensors including: blood volume pulse, skin conductance,
skin temperature, and abdominal respiration sensors. Audiovisual recordings were
also obtained using a Logitech web camera. The scenarios that were used to elicit
deceptive and truthful responses are as follows.

Abortion. The subjects provided two separate statements, including a descrip-
tion of the subject’s truthful opinion on abortion, and a deceptive description
of the opposite opinion on abortion presented as if it was the subject’s true
opinion

Best Friend. The subjects provided two separate statements including a true
description of the subject’s best friend, as well as a deceptive description
about a person that the subject cannot stand described as if s/he were a best
friend.

13.3.1.2 Multimodal Feature Extraction
The physiological features included assessments for temperature, heart rate, blood
volume pulse, skin conductance, and respiration rate. Moreover, the features in-
cluded a set of statistical descriptors of the raw measurements such as the maxi-
mum and minimum values, means, power means, standard deviations, and mean
amplitudes (epochs).

The linguistic features included unigram counts, representing the frequency of
occurrence of words in the transcript of subjects responses, and features derived
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from the frequency counts of word classes in the Linguistic Inquiry and Word Count
(LIWC) lexicon.8

The thermal features were extracted by isolating the thermal facial areas in the
video frames by employing image binarization techniques in addition to using
relative measurements to locate the neck area and eliminate the back ground.
Once the thermal faces were located in each frame, a thermal map was created
by extracting the maximum, minimum, average, and standard deviation of the
temperatures in addition to a histogram representing the temperature distribution
in the faces.

13.3.1.3 Results
Feature-level multimodal fusion was used to integrate the features from individual
modalities in order to train a decision tree classifier. A leave-one-out cross validation
scheme was used and the average overall and per class accuracies were reported.

This data distribution resulted in a baseline performance of 51.01% and 48.99%
for the deceptive and truthful classes, respectively. Additionally, across-topic learn-
ing scheme was used, where the classifier was trained with features extracted from
one topic while tested on the other.

Figure 13.5 illustrates the performance of the features extracted from both top-
ics together for all modalities. The use of multimodal features further enhanced
the classification accuracy. In particular, the integration of all three modalities to-
gether in addition to the integration of the thermal and linguistic features obtained
higher accuracy in comparison to all other combinations as well as all individual
modalities. Although the best performing single modalities were linguistic and
physiological, the combination of thermal and linguistic modalities exceeded 70%
for both classes and for the overall accuracy.

Figures 13.6 and 13.7 illustrate the deceptive and truthful detection rates and
the overall accuracy for the across-topic learning process using individual and
combined modalities. In this learning scheme, the classifier was trained using
features from one topic and then tested on the other topic. In both cases, it can
be noticed that the linguistic modality created a large imbalance between the
detection rate of the deception and truthfulness classes, which indicates the failure

8. The LIWC lexicon, available at http://liwc.wpengine.com/, is a resource developed for psycholin-
guistic analysis and contains about 70 word classes relevant to psychological processes (e.g.,
emotion, cognition).

http://liwc.wpengine.com/
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Figure 13.5 Deception, truthfulness, and overall accuracy percentages for individual and integrated
modalities using features extracted from both the abortion and best friend topics.
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Figure 13.6 Deception, truthfulness, and overall accuracy percentages for individual and integrated
modalities using across-topic learning. Best friend features are used for training and
abortion features are used for testing.

of the learning process. The disposition of the results can be explained with the
dependency of the linguistic features on the corresponding topic.

Experimental results suggested that features extracted from linguistic and ther-
mal modalities can potentially be good indicators of deceptive behaviors, which
paves the way towards a completely automated, non-invasive deception detection
process. Moreover, creating a multimodal classifier by integrating features from
different modalities proved to be superior compared to learning from individual
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Figure 13.7 Deception, truthfulness, and overall accuracy percentages for individual and integrated
modalities using across-topic learning. Abortion features are used for training and best
friend features are used for testing.

modalities. The experiments showed that the quality of the extracted features is
topic-dependent as the physiological and thermal features were topic-independent
while the linguistic features were not.

This work was extended later in Abouelenien et al. [2015b], where a “Mock
Crime” scenario was added and different thermal regions in the face were tracked.
In this scenario, a $20 bill was hidden in an envelope and the subjects were sup-
posed to steal the money and deny it. This work reported that the forehead thermal
features outperformed other facial features in its ability in detecting deceit.

13.3.2 Language and Acoustics
Psychology literature have found a significant correlation between deceptive be-
havior and speech attributes such as pitch, pitch accent, intonation, rhythm, and
loudness [Depaulo et al. 2003, Zuckerman et al. 1981]. The speech community
have addressed the identification of deceptive speech using machine learning ap-
proaches mainly by combining prosodic and cepstral speech features. Speech fea-
ture extraction is usually conducted at small intervals, also called audio frames, or
globally by calculating representative statistics of the whole utterances. Most re-
searchers use descriptive statistics such as mean, medians, standard deviations,
and ranges of prosody features. Among them, fundamental frequency, pitch, en-
ergy, pauses, and formants are the most commonly used features. While initial
efforts explored the use of lexical features derived from speech transcriptions or
acoustic features extracted from the raw speech signals separately, more recent
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studies have addressed the relation between language and acoustics on the identi-
fication of deceptive behaviors.

Hirschberg et al. Hirschberg et al. [2005] presented one of the first studies to ex-
plore the potential of combining prosodic and lexical cues on the identification of
deceptive speech. Their experiments were conducted on a self-acquired dataset, the
Columbia-SRI-Colorado corpus CSC. The dataset consists of audio recorded inter-
views containing deceptive and truthful responses from 32 speakers and comprises
approximately 7 hours of speech. In this work, authors built classifiers using the lin-
guistic and speech modalities separately as well a combination of both modalities.
Their experimental results showed noticeable improvement when combining the
linguistic and acoustic modalities by reducing the baseline error by 6%. Overall, this
study showed that identifying deception in speech content is a very challenging task
as speech shows a high degree of variation among individuals making difficult to
develop speaker independent models. Graciarena et al. [2006] reported additional
experiments on the CSC corpus where authors use cepstral features to investigate
speaker variability on the deception detection task. This study also evaluated the
use of automatic speech recognition as alternative to manual transcription. Results
showed a reasonable trade-off in quality of deception classifiers build from tran-
scripts obtained with noisy speech to text recognition. Following the same line of
research, Enos et al. [2007] analyzed speaking segments, previously identified as
emotionally charged and cognitively loaded, as a way to determine if a subject was
telling the truth or lying. These events, also termed as hot spots by the psychol-
ogy community, are particularly useful in the identification of lies as they indicate
salient topics of the speaker’s deception that are highly associated to deceptive
statements. Authors approach consisted of annotating the CSC corpus with criti-
cal segments and using lexical features, pauses, and vocal energy features to build
models able to predict their occurrence. Their experimental results showed 20%
relative improvement of performance over a random baseline while identifying de-
ceptive speech.

In addition, acoustics and language analysis has been also applied to explore
cultural differences in deceptive behavior. A study on examining cultural differ-
ences in deceptive behavior among American and Chinese native speakers—all
speaking English—is presented in Levitan et al. [2015]. This study also introduces
a deception dataset that includes personality, gender, and ethnicity information as
well as confidence ratings on subjects’ ability to deceive and to detect deception.
Deceptive and truthful responses were elicited using the “fake resume” paradigm,
where subjects provided true and false biographical information in a game setting
in which they played the role of interviewer or interviewee. This dataset contains
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information from 139 subject pairs and comprised about 100 hours of speech.
The ground truth was provided by the participants during each interview using key
presses to indicate truth or lie labels. In this work, authors sought to distinguish
between deceptive and non-deceptive behavior using features derived from the in-
dividual’s speech, speaker’s gender, ethnicity, and personality factors. Acoustic
features included F0, pitch, voice quality, speaking rate among others while person-
ally factors included measurements derived from the Neuroticism, Extraversion,
Openness, and Five Factor Inventory. Several machine learning experiments were
conducted to evaluate these features on the identification of deceptive utterances.
Research findings indicate that information about speaker’s gender and their na-
tive language improves the performance of acoustic models for deception detection
and further suggests cultural differences during deceptive behavior.

Deception detection on audio content has also been addressed in competitive
role-playing games (RPGs). Chittaranjan and Hung [2010] created an audio-visual
recordings of the “Are you a Werewolf?” game in order to detect deceptive behavior
using non-verbal audio cues and to predict the subjects’ decisions in the game.
Authors were able to identity suspicious behavior based on players interactions
measured through several game features such as speaking statistics, speaker’s
turns information, player interruption activity, and pitch analysis.

Overall, the inclusion of the acoustic channel into deception detection models
is a promising research direction. However, current technologies for speech pro-
cessing make challenging to process noisy data coming from natural scenarios,
particularly those where the speech signal suffer from significant quality loss such
as data coming from phone calls or multi-party conversations. Other challenges
include noise introduced due to speech recognition errors. In addition, speaker’s
individual variability including gender, age, accent, voice tone, and cultural back-
ground requires building specific models that incorporate these dimensions into
the analysis.

13.3.3 Vision and Language
More recently, the interest shifted towards detection of real-life deceptive behavior.
A study used facial expressions, gestures, gaze, and conversational features in or-
der to identify signals of trustworthiness between human negotiators [Lucas et al.
2016]. The study reported that multimodal approaches were better predictors of ob-
jective trustworthiness, whereas facial expression modality was more informative
for perceived trustworthiness, suggesting that human mainly rely on facial expres-
sions when judging trustworthiness.
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The first reported multimodal deception detection approach in high stakes real-
life data was presented in Pérez-Rosas et al. [2015b]. This work introduced a novel
dataset consisting of 121 deceptive and truthful video clips, from real court trials.
The transcription of these videos was used to extract several linguistic features,
and the videos were manually annotated for the presence of multiple gestures
that were used to extract non-verbal features. Moreover, a system that jointly used
the verbal and non-verbal modalities was developed to automatically detect the
presence of deception. The performance of the system was compared to that of
human annotators.

13.3.3.1 Dataset
The dataset consists of 121 videos including 61 deceptive and 60 truthful trial clips.9

The average length of the videos in the dataset is 28.0 seconds. The data consists of
21 unique female and 35 unique male speakers, with their ages approximately rang-
ing between 16 and 60 years. The video clips were labeled as deceptive or truthful
based on guilty verdict, non-guilty verdict, and exoneration. Examples of famous
trials included in the dataset are the trials of Jodi Arias, Donna Scrivo, Jamie Hood,
Andrea Sneiderman, Mitchelle Blair, Amanda Hayes, Crystal Mangum, Marissa De-
vault, Carlos Miller, Michael Dunn, Bessman Okafor, Jonathan Santillan, among
other trials.

13.3.3.2 Multimodal Feature Extraction
All the video clips were transcribed via crowd sourcing using Amazon Mechanical
Turk. The final set of transcriptions consisted of 8,055 words, with an average of
66 words per transcript. The verbal features consisted of unigrams and bigrams
derived from the bag-of-words representation of the video transcripts.

The gesture annotation was performed using the MUMIN coding scheme,
which is a standard multimodal annotation scheme for interpersonal interactions
[Allwood et al. 2007]. In the MUMIN scheme, facial displays include several dif-
ferent facial expressions associated with overall facial expressions, eyebrows, eyes
and mouth movements, gaze direction, as well as head movements. In addition,
the scheme includes a separate category for general face displays, which codes
four facial expressions: smile, laughter, scowl, and other. Hand movements are
also labeled in terms of handedness and trajectory. Using this coding scheme, bi-
nary feature vectors were created from annotations that indicate the presence or
absence of each gesture in the video clips.

9. http://deceptiondetection.eecs.umich.edu/

http://deceptiondetection.eecs.umich.edu/
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Figure 13.8 Distribution of non-verbal features for deceptive and truthful groups.

13.3.3.3 Results
The results were reported as statistical measurements and frequency counts of the
gestures associated with both classes in addition to a machine learning approach
to learn from both modalities.

Figure 13.8 shows the non-verbal features for which noticeable differences were
observed in the two classes. Each bar pair shows the percentage distribution of the
given gesture occurring during the deceptive and truthful conditions. For instance,
it can be seen that eyebrow and eye gestures differentiated between the deceptive
and truthful conditions as the non-overlapping error bars suggest statistically sig-
nificant difference (P < 0.05). In this figure, we can also observe that truth-tellers
raised their eyebrows (Eyebrows raising), shook their head (Head repeated shake),
and blinked (Eyes closing repeated) more frequently than deceivers. Interestingly,
deceivers seemed to blink and shake their head less frequently than truth-tellers.

Deception classifiers were built using two classification algorithms: Decision
Tree (DT) and Random Forest (RF) using leave-one-out cross-validation. The choice
of these classifiers is based on their success and recommendation from previous
work [Qin et al. 2004, 2005]. Moreover, a decision tree facilitates the visualization
of the constructed tree model and determines the sequence and importance of the
multimodal features at different tree levels.

Table 13.1 shows the accuracy figures obtained by the two classifiers. As shown
in this table, the combined classifier that learned from all the features (using
Decision Tree) and the individual classifier that relied on the facial displays features
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Table 13.1 Deception classifiers decision tree (DT) and random forest (RF) using individual
and combined sets of verbal and non-verbal features

Feature Set DT RF

Unigrams 60.33% 56.19%

Bigrams 53.71% 51.20%

Facial displays 70.24% 76.03%

Hand gestures 61.98% 62.80%

Uni+Facial displays 66.94% 57.02%

All verbal 60.33% 50.41%

All non-verbal 68.59% 73.55%

All features 75.20% 50.41%

Table 13.2 Feature ablation study

Feature Set DT

All 75.20%

Hand gestures 71.90%

Facial displays 59.50%

Bigrams 66.94%

Unigrams 61.98%

(using Random Forest) achieved the best results. Comparing the integration of
verbal features and visual features, the non-verbal features clearly outperformed
the verbal features.

Table 13.2 shows the accuracies obtained when one feature group is removed
and the deception classifier is built using the remaining features. Interestingly, the
facial displays contributed the most to the classifier performance, followed by the
unigram features.

Figure 13.9 shows the five most predictive features of the presence of deception
were the presence of frowning (Frowning), eyebrows movement (Eyebrows raising),
lip gestures (Lip corners up, Lips protruded, Lips retracted), and head turns (Head
side turn). These gestures were frequently portrayed by defendants and witnesses
while being interrogated.
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Figure 13.9 Weights of top non-verbal features in the multimodal deception classifier. The weights
shown in this figure are normalized between 0 and 1 to easily observe the contribution
of each feature.

Table 13.3 Performance of three annotators (A1, A2, A3) and the developed automatic system
(Sys) on the real-deception dataset over four modalities

Text Audio Silent video Full video

A1 54.55% 51.24% 45.30% 56.20%

A2 47.93% 55.37% 46.28% 53.72%

A3 50.41% 59.50% 47.93% 59.50%

Sys 60.33% NA 68.59% 75.20%

The proposed system was compared to the human ability to identify deceit on
trial recordings when exposed to four different modalities: Text, consisting of the
language transcripts; Audio, consisting of the audio track of the clip; Silent video,
consisting of only the video with muted audio; and Full video, where audio and video
are played simultaneously. The results, shown in Table 13.3, support the argument
that human judges have difficulty performing the deception detection task [Ott
et al. 2011]. Human detection of deception on silent video was more challenging
than the rest of the modalities due to the lesser amount of deception cues available
to the raters.
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In summary, the analysis of non-verbal behaviors occurring in deceptive and
truthful videos brought insight into the gestures that play a role in deception.
Additional analysis showed the role played by the various feature sets used in the
experiments. The proposed system achieved accuracies in the range of 60–75%
and outperformed humans using different modalities with a relative percentage
improvement of up to 51%. This showed that multimodal deception detection can
provide valuable support for the trials decision making process.

13.4 The Way Forward
Based on the success of multimodal approaches in detecting deceit, improvements
can be made to further achieve higher detection rates. For instance, improvements
could be made in the multimodal data acquisition process, including the design
of deceptive scenarios and data collection; in the selection of modalities to be
extracted and their representation; or in the implementation of more efficient
multimodal data fusion techniques.

Most of the developed deception datasets were in the range of 15–40 subjects.
Larger datasets need to be collected in order to be able to detect reliable clues
of deception as well as be able to generalize well to different real-life deception
situations.

In a lab-setting environment where stakes are low or subjects are not motivated
enough, the challenge is to develop creative scenarios other than the famous “Mock
Crime” scenario in order to surprise the subjects and observe their initial reactions.
This can be achieved by hiding the actual scenarios from the subjects before the
recordings and surprising them with unexpected questions during the interviews.
In real-life scenarios, there is a limit on the number of modalities used but no
restrictions on the number of subjects. Efforts need to be exerted in order to
collect larger datasets for deception detection. For instance, by taking advantage
of publicly available data such as trials, 911 calls, police interrogations, political
speeches, TV shows, and interviews.

For both lab-setting and real-life data, the cultural differences must be con-
sidered. Several cultural norms in a certain country could be easily considered
suspicious behavior in another country. Hence, cross-cultural studies need to be
conducted in order to identify such differences and develop a system that avoids
bias and takes those differences into consideration.

The number of modalities used for feature extraction can further increase,
which can result in a more reliable deception detection system. For instance, an
integration of psychological, visual, physiological, linguistic, acoustic, and thermal
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modalities can reach the desired performance, especially in a lab-setting environ-
ment.

Finally, different techniques can be explored in order to enhance the quality of
the extracted features. Temporal fusion for example can be used for this purpose.
This type of fusion accounts for the temporal relationships between the modali-
ties in the input datastream. One important research question when modeling the
multimodal latent structure is the granularity of the input. Treating the deception
data as a time series can also be used to determine the relationships and depen-
dencies between different features as well as modalities and specify the variations
that occur within a certain window right before an act of deceit.

Furthermore, different classifiers and deep learning approaches can be used
to detect deceit. For instance, deep learning uses multiple layers of linear and
nonlinear transformations in order to interpret different levels of abstractions in
the data, as can be seen in Chapter 4. In particular, Deep Neural Networks have
shown success in detecting visual concepts in computer vision, which could add to
the reliability of a multimodal deception detection system.
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Focus Questions
13.1. What is deception detection and why is it important?

13.2. What is meant by multimodal deception detection?

13.3. Which modalities can be used for deception detection?

13.4. What are the typical features that can be extracted from each modality to
benefit the process of detecting deceit?

13.5. How can the multimodal features be integrated?

13.6. What are the advantages of using multimodal features compared to features
from a single modality?

13.7. What are the differences, advantages, and limitations of processing multi-
modal lab-setting data and real-life deception data?
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13.8. How can deception detection be improved in the future? Design a high-
performing deception detection system, and argue for its specific strengths.

13.9. What evidence is there that automatic multimodal-multisensor deception
detection systems may outperform human judgment in the future? How can future
systems be designed to further leverage these strengths of automated deception
detection?

13.10. Discuss the problem of intentionally faking innocence on deception tests,
which is a form of spoofing the system that creates potential security risks, and how
systems can be designed to avoid it.
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correlation analysis methods, 76
defined, 20
Dynamic Time Warping, 78
early integration, 58
encoder-decoder models, 112
multimodal machine learning, 20
social signals, 218

Alternative encoders and decoders, 107–109
Alzheimer’s disease, 301
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social interactions, 22

Analytic applications for multimodal
learning analytics, 363

Anger
affect detection, 170
expressions, 83, 266–267

Animals, multimodal communication by,
205–208

Animated agents
affective computing, 264
Autism Spectrum Disorders, 270
human perception of expressions, 270

ANNs (artificial neural networks), 2–3
ANVIL tool

affect and social signals, 233
userstate and trait recognition, 149

Appearance-based modeling in userstate
and trait recognition, 147

Apraxia, 388
Architectures

multimodal signal processing, 3, 5
userstate and trait recognition, 135–144

Arousal aspect in deception detection, 423
Artificial Intelligence (AI)

emotional, 5–6
HCI relationship, 1–2
increased usage, 2–3
machine learning. See Machine learning

Artificial neural networks (ANNs), 2–3
ASD (Autism Spectrum Disorders)

contextual cues, 278
human-robot interactions for social

learning, 270–271
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(AHMM), 236

Asynchronous sensor measurements, 76
Attention

encoder-decoder models, 109–112
learning prerequisites, 353–356

Audio
deception detection, 443
deep learning, 460
userstate and trait recognition, 145–146

Audio/Visual Emotion Challenge (AVEC)
affect detection, 188–189
deep learning, 462
social interactions, 22
speech analysis, 388, 400
speech and depression, 390–391, 397
userstate and trait recognition, 133–135,

150
Audio-visual speech recognition (AVSR)

challenges and limitations, 24
motivation for, 21
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Distance Access (AMIDA), 232

AUs. See Action units (AUs); Facial Action
Coding System (FACS)

Autism Spectrum Disorders (ASD)
contextual cues, 278
human-robot interactions for social

learning, 270–271
Autoencoders

multimodal deep learning, 63
neural networks, 28

Automated transcription requirements,
240–241

AVEC. See Audio/Visual Emotion Challenge
(AVEC)

Average rule in training learners, 54–55
AVSR (audio-visual speech recognition)

challenges and limitations, 24
motivation for, 21

Bag-of-words (BoW) algorithm
deception detection, 440
defined, 377

depression behavioral signals, 396
depression detection, 386
document comparisons, 61
facial analysis, 385
text representation, 116–117

Bayesian Networks (BNs), 83–85
Beck Depression Index (BDI), 379
Behavioral cues and measures

cognitive load indicators, 290, 301–304
depression. See Depression behavioral

signals
social signals, 215, 217, 219

Belfast Naturalistic Database, 231
Belfast Story Telling corpus

description, 231
enjoyment recognition, 245–246

Bi-directional Long-Short-Term Memory
Neural Networks, 83

Bi-directional LSTMs (BLSTMs), 178–179
Bias vectors

dense layers, 101
image representation, 113–114

Bimodality communication, 207–208
Bipolar depression, 376
Black boxes in deep learning, 463–464
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Blends of emotions, 267–270
Blobs in thermal infrared imagery, 147
Blood volume pulse (BVP) sensors in

deception detection, 430
BLSTM-NN (Dynamic Bayesian Networks)
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BLSTMs (bi-directional LSTMs), 178–179
Blush detection in deception detection,

432
BNs (Bayesian Networks), 83–85
Body language and expressions

as contextual cue, 277
deception detection, 427
depression behavioral signals, 392–394
human perception of, 269–272

BodyANT sensors, 148
Boltzmann machines, 34
BoW. See Bag-of-words (BoW) algorithm
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cognitive load, 304
userstate and trait recognition, 148
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databases, 230
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Method Protocol), 182

BVP (blood volume pulse) sensors in
deception detection, 430
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CAMI (Cognition-Adaptive Multimodal

Interface), 299
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Canonical correlation analysis (CCA), 8

coordinated representations, 32
description, 4
multimodal interfaces, 76–77
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correlation analysis methods, 78–79
multimodal interfaces, 76
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encoder-decoder models, 108–112
media description, 22–23
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recognition, 136
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Case study for cognitive load indicators,
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Categorical representation in userstate and
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116–117
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coordinated representations, 32
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multimodal interfaces, 76–77
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multimodal learning analytics, 355
userstate and trait recognition, 150
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detection, 426

Chittaranjan, G. and Hung, H., role-playing
games, 439

Chunking clusters in userstate and trait
recognition, 137

Classification algorithms in deception
detection, 441–442

Classifier combinations, defined, 204
Classifier diversity

defined, 204
social signals, 212–214

Classifiers, defined, 204
Classifying multimodal data

conclusions and future work, 64–66
focus questions, 66–67
integration, 57–60
introduction, 49
multimodal deep learning, 62–64
multiple kernel learning, 60–62
overview, 49–57
references, 67–69

Click-stream data in multimodal learning
analytics, 337–338

Clinic-based multimodal assessment of
depression, 400

CLT (Cognitive Load Theory)
multimodality and cognitive load, 310–

311
unidimensional scales, 295
working memory based, 301

CMS (Continuous Measurement System),
233

CNNs. See Convolutional Neural Networks
(CNNs)

Co-clustering approach for social signals,
219

Co-learning
deep learning, 466
defined, 20
discussion, 38
hybrid data, 37
multimodal machine learning, 20
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overview, 33
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social signals, 219
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COBE (Common Orthogonal Basis

Extraction), 77
Cognition-Adaptive Multimodal Interface

(CAMI), 299
Cognitive load, defined, 293, 333
Cognitive Load Component Survey, 298
Cognitive load indicators

behavioral measures, 301–304
case study, 313–318
conclusion, 318–320
focus questions, 320–321
introduction, 289–292
multimodal signals and data fusion,

309–318
references, 321–330
state-of-the-art theories, 292–301
subjective measures, 295–296

Cognitive load measurement
applications, 299–301
defined, 293
factors, 297–299
performance, 296–297
physiological, 304–309
purpose, 290

Cognitive Load Theory (CLT)
multimodality and cognitive load, 310–

311
unidimensional scales, 295
working memory based, 301

Cognitive processing in deception
detection, 423

Columbia-SRI-Colorado (CSC) corpus, 438
Combinations, classification, 52, 204
Common Orthogonal Basis Extraction

(COBE), 77
Communication, defined, 204
Compatibility function for joint representa-

tion, 121
Competence in Oral Presentation Corpus,

344

Compression auto encoders, 143
Computational methods in multimodal

analysis, 348–349
Computer Expression Recognition Toolbox

(CERT)
deception detection, 429
multimodal learning analytics, 355
userstate and trait recognition, 150

Computer-mediated learning, 338
Computing Adaptive Testing, 379
Concatenation in joint representations, 26
Concept Net database, 146
Conceptual grounding in non-parallel data,

35–36
Conditional Ordinal Random Field (CORF),

85
Conditional Random Fields (CRFs) for facial

expressions, 84–85
Confidence measure and estimation, 10

description, 4
userstate and trait recognition, 140

Congruent conditions in emotional
expressions, 271

Congruent modalities, 264–265, 267, 269–
270

Construct
defined, 168
description, 169

Context
affect expressions, 276–278
databases, 230
encoder-decoder model attention

mechanisms, 111
multimodal interfaces, 74, 87–88

Context-sensitive CORF (cs-CORF) model,
87–88

Continuous bag-of-words (CBOW) model,
116–117

Continuous classification in multimodal
frameworks, 241

Continuous Measurement System (CMS),
233

Continuous representation, defined, 133
Continuous skip-gram model, 116, 118
Control aspect in deception detection, 423
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defined, 101
intermediate fusion, 104–105
multimodal deep learning, 62

Convolutional Neural Networks (CNNs)
deep learning, 460
defined, 101
early fusion, 101–102
encoder-decoder models, 108–109, 111
image representation, 113
intermediate fusion, 104
joint representation, 120
multimodal representations, 25

Cooperative learning, 10
description, 4
userstate and trait recognition, 142

Coordinated representations
multimodal, 25–27, 30–32
social signals, 219

Coordinated responses in affect detection,
172

Copula functions for facial expressions, 87
CORF (Conditional Ordinal Random Field),

85
Correlation analysis methods for

multimodal interfaces
CCA, 77
DTW and CTW, 78–79
JIVE, 77–78
overview, 75–77
RCICA, 79–82
RCITW, 82–83
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defined, 72
multimodal interfaces, 71

Corruptions in RCICA, 79–80
Coupled Hidden Markov Models (CHMMs)

affect detection, 176–177
multimodal fusion, 236
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CQT (Control Question Test), 431
CRFs (Conditional Random Fields) for facial

expressions, 84–85
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challenges and limitations, 24
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cs-CORF (Context-sensitive CORF) model,
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Corpus), 399

DAMSL (Dialog Act Markup in Several
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Data, databases, and coding

deception detection, 434, 440
Math Data Corpus, 342
multimodal learning analytics, 338,

347–348
Oral Presentation Corpus, 345
real-time sensing of social signals,

228–233
userstate and trait recognition, 143

Data-driven approach
cognitive load measurement, 290
word embeddings, 25

Data fusion
affect detection, 174
cognitive load indicators, 309–318

DataShop repository, 348
DBMs (deep Boltzmann machines), 28–29
DBNs (Dynamic Bayesian Networks)

affect detection, 176–177
facial expressions, 84–85
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affect detection, 76
KCCA alternative, 32

DCT (Discrete Cosine Transform) for facial
expressions, 86

Deception detection
datasets and devices, 434, 440
focus questions, 445–446
future, 444–445
individual modalities, 422–423
introduction, 419–421
language and acoustics, 437–439
language overview, 424–427
multimodal feature extraction, 434–435,

440–441
multiple modalities, 433
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psychology, 423–424
results, 435–437, 441–444
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and language analysis, 433–434
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vision overview, 427–430
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affect detection, 175, 182–183
depression behavioral signals, 396
early studies, 233
userstate and trait recognition, 140

Decision process in userstate and trait
recognition, 139–140

Decision Tree (DT) algorithm in deception
detection, 441–442

Deep architectures in deep learning, 63
Deep asymmetric structured joint

embedding, 121
Deep Boltzmann machines (DBMs), 28–29
Deep canonical correlation analysis (DCCA)

affect detection, 76
KCCA alternative, 32

Deep learning
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conclusion, 468–470

deep architectures, 63
encoder-decoder models, 105–112
focus questions, 123
fusion models, 100–105
future, 465–466
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introduction, 99–100
multimodal embedding models, 112–122
multimodal joint representation, 119–

122
multimodal signal processing, 3, 5
overview, 457–458
perspectives, 122–123
references, 123–128, 470–472
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text representation, 114–119

Deep neural networks, 28
classification, 52
machine learning, 141
modality fusion in MMAD systems,

178–180
multimodal deep learning, 62–63, 65

Deep Reinforcement Learning, 122–123
Deep structured joint embedding, 121
deep visual-semantic embedding (DeViSE),

30
Denoising autoencoders, 28
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defined, 101
early fusion, 101

Department of Defense Polygraph Institute,
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Dependencies
classification, 52
context, 87–88
multimodal deep learning, 62
multimodal interfaces, 71

Depression behavioral signals
analysis, 394–395
assessment, 379–380
body movement, 392–394
conclusion and current challenges,

401–403
depression overview, 376–379
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Depression behavioral signals (continued)
facial analysis, 382–385
focus questions, 404–405
implementation-related considerations

and elicitation approaches, 398–401
introduction, 375–376
multimodal fusion, 395–398
signal processing systems, 380–382
speech analysis, 385–391

Description feature for databases, 231
Detection style classification papers for
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DeViSE (deep visual-semantic embedding),

30
Dialog Act Markup in Several Layers

(DAMSL), 232
Dimensional spaces in mental states,

266
Dindar, M., and cognitive load measure-

ment, 298–299
Discrete Cosine Transform (DCT) for facial

expressions, 86
Discrete representation, defined, 133
Disgust expressions, 266
Distant-supervised learning, 463
Distress Assessment Interview Corpus

(DAIC), 399
Diverse social signals, 212–213
DLPFC (dorsolateral prefrontal cortex) and

cognitive load, 304
Domain adaptation

defined, 72
facial behavior analysis, 89–90
multimodal interfaces, 74, 88–90

Domain expertise
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multimodal learning analytics, 353
problem solving, 350–353

Domain-trained approaches in userstate
and trait recognition, 146

Dominance
feeling ranges, 266
non-redundant signals, 207

Dorsolateral prefrontal cortex (DLPFC) and
cognitive load, 304

Driver distraction in cognitive load, 300–301
DT (Decision Tree) algorithm in deception

detection, 441–442
DTW. See Dynamic Time Warping (DTW)
Dual-task paradigm in cognitive load

measurement, 297
Dynamic Bayesian Networks (BLSTM-NN)

classifiers, 239
Dynamic Bayesian Networks (DBNs)

affect detection, 176–177
facial expressions, 84–85

Dynamic classifiers in multimodal fusion,
235–236

Dynamic Time Warping (DTW), 8
correlation analysis methods, 78–79
description, 4
multimodal fusion, 236
RCICA, 82

Dynamics of expressions, 271
Dysarthria in speech analysis, 388

EARL (Emotion Annotation and Represen-
tation Language), 140, 232

Early combinations, defined, 52
Early fusion

affect detection, 174–175
defined, 101
joint representations, 26, 219
overview, 101–103
social signals, 208–209, 212, 218
studies, 234

Early integration in classifying multimodal
data, 57–58

ECG in cognitive load measurement, 298
EDA (electrodermal activity), 174
Educational activity

Math Data Corpus, 342
Oral Presentation Corpus, 345

Educational management systems in
multimodal learning analytics, 338

Educational Testing Service
multimodal learning analytics, 347–348
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ELAN (EUDICO Linguistic Annotator), 149,

233
Electrodermal activity (EDA), 174
Electromyography (EMG) system

facial expressions, 277
userstate and trait recognition, 148

Elicitation methods for depression
behavioral signals, 399

Embedding models
multimodal. See Multimodal embedding

models
sequence-to-sequence encoder-decoder,

105–106
text representation, 114–119

EMBODI-EMO database, 270
Embodied Cognition theory, 358–359
Emergence in non-redundant signals, 207
Emergency management in cognitive load,

299–300
EMG (electromyography) system

facial expressions, 277
userstate and trait recognition, 148

EMMA (Extensible MultiModal Annotation)
markup language, 140

Emotion Annotation and Representation
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353–356
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userstate and trait recognition, 140
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affect detection. See Affect detection
body movement and depression, 392
challenges and limitations, 24
deception detection, 423, 428
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facial expressions, 83, 85
haptic expressions of affects, 276
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Emotive music databases, 230
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Annotation (EXMARaLDA), 233

Extensible MultiModal Annotation (EMMA)
markup language, 140
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FACET program, 182–183
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databases, 232
deception detection, 428–429
defined, 72, 377
depression behavioral signals, 382–383
facial expressions, 83
multimodal learning analytics, 355
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affect detection, 181
depression behavioral signals, 382–385
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multimodal interfaces, 73–74
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Facial expressions and behavior

deception detection, 427–429
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human perception of, 269–272
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social signals, 215, 217
temporal modeling, 83–87
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detection, 431–432
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Feature-based approaches in userstate and
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affect detection, 174–175, 180–182
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depression behavioral signals, 396
early studies, 233
userstate and trait recognition, 139
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Feelings in affective ground truth, 171
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FFNN-LM (feed-forward neural network

language model), 115–116
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Frame-level features for userstate and trait
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affect detection, 173–180, 182–185
cognitive load indicators, 309–318
deep learning, 100–105
defined, 20
depression behavioral signals, 395–398
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framework requirements, 240–242
intermediate fusion, 104–105
joint representations, 26, 219
late fusion, 103–104
multimodal machine learning, 20
overview, 100–101
real-time sensing of social signals,

233–237
social signals, 208–209, 212, 218–219
studies, 234
userstate and trait recognition, 139–140

GAD (Generalized Anxiety Disorder), 379
Galvanic Skin Response (GSR)

cognitive load, 305–307
cognitive load measurement, 292, 314–

318
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userstate and trait recognition, 148
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databases, 230
real-time sensing, 251

GANs (Generative Adversarial Networks),
462, 466

Garbage classes, 239
Gating units in deep learning, 62
Gaussian Mixture Models (GMMs)

defined, 377
speech and depression, 390

Gaussian Staircase Regression (GSR)
approach

depression behavioral signals, 398
speech and depression, 391, 398

GAVAM (Generalized Adaptive View-based
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as contextual cue, 277
depression behavioral signals, 393–394
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Models), 351–352
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ment, 298
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data annotation, 149
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Generalized Anxiety Disorder (GAD), 379
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(GBM), 351–352
Generative Adversarial Networks (GANs),

462, 466
GentleBoost for facial expressions, 84–85
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cognitive load indicators, 292, 294
defined, 293

Gestures
as contextual cue, 277
deception detection, 427
depression behavioral signals, 393
emotion categories, 269

online recognition, 239–240
GKT (Guilty Knowledge Test), 431
GMMs (Gaussian Mixture Models)

defined, 377
speech and depression, 390

Graphical models in joint representations,
27–28

Graphical User Interfaces (GUIs), 2
Gross errors

correlation analysis methods, 76
defined, 72

Ground truth, affective, 171–172
Grounding non-parallel data, 35–36
GSR (Galvanic Skin Response). See Galvanic

Skin Response (GSR)
GSR (Gaussian Staircase Regression)

approach
depression behavioral signals, 398
speech and depression, 391, 398

GTrace (General Trace) program
data annotation, 149
databases, 233

Guilty Knowledge Test (GKT), 431
GUIs (Graphical User Interfaces), 2

H&H Theory, 357
Hamilton Rating Scale for Depression

(HRSD), 379
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Hand-crafted features

defined, 377
facial analysis, 384

Hand gestures
as contextual cue, 277
deception detection, 427

Handwriting
AI usage, 2
cognitive load indicators, 302–303
multimodal learning analytics, 360–361

Happiness
Autism Spectrum Disorders, 271
expressions, 266

Haptic expressions of affects, 273–276
Hashing, 31
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HCI (Human-Computer Interaction)
AI increased usage, 2–3
AI relationship, 1–2
cognitive load indicators, 294

HCRF (Hidden Conditional Random Field)
for facial expressions, 84–85

Head behavior in social signals, 215,
217

Heart rate
cognitive load, 305
userstate and trait recognition, 149

Hidden Conditional Random Field (HCRF)
for facial expressions, 84–85
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neural networks, 8

Hidden Markov Models (HMMs)
affect detection, 176–177
audio-visual speech recognition, 21
facial expressions, 84–85
multimodal fusion, 236
userstate and trait recognition, 141

Hidden states
encoder-decoder models, 105, 108
Recurrent Neural Networks, 101

Hierarchical functionals in userstate and
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383

HMMs. See Hidden Markov Models (HMMs)
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haptic expressions of affects, 273–276
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Human performance in limited-resource
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Human-robot interactions
haptic expressions of affects, 274–276
social learning, 270–271

Humanoid robot trends, 204
Hundred year emotion war, 169
Hybrid data in co-learning, 37
Hybrid fusion for affect detection, 175
Hybrid SVM-HMM model, 85
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IEMOCAP (Interactive Emotional Dyadic
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iHEARu-PLAY platform, 149
IIT (Information Integration Theory),

273–274
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tion, 119–120
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challenges and limitations, 24
deep learning, 64
joint representation, 119–122
media description, 22–23
multimodal embedding models, 113–

114
order-embeddings, 31
userstate and trait recognition, 146–147

Imitation learning in userstate and trait
recognition, 145

Incongruent modalities in multimodal
expressions of affects, 264–267, 270,
272–273

Incremental processing in online
recognition, 239–240

Independence
non-redundant signals, 207
social signals, 209
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Inflectional languages in text representa-

tion, 114
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273–274
Information retrieval system design in

cognitive load measurement, 301
Insight in problem solving, 350–353
Integration in classifying multimodal data,

57–60
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facial expressions, 86–87
human perception of expressions, 272–

273
Interactive Emotional Dyadic Motion

Capture (IEMOCAP) database, 231
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multimodal and affect-sensitive. See
Multimodal and affect-sensitive
interfaces

userstate and trait recognition, 140–141
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Intermediate fusion, 104–105
Intermediate integration in classifying

multimodal data, 60
Intermodal context in databases, 230
International Affective Picture System

(IAPS), 308
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cognitive load indicators, 292, 294
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Joint representations
multimodal, 25–30, 119–122
social signals, 219
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k-NN classifiers, 89
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Kernel canonical correlation analysis
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multimodal interfaces, 76
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defined, 52
multiple, 60–62
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enjoyment recognition, 245–246, 248
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userstate and trait recognition, 147
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recognition, 144, 146
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LAK (Learning Analytics and Knowledge
Conference), 336

Landmark detection systems, 432
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cognitive load, 303–304
data-driven word embeddings, 25
deception detection, 420
deception detection, and acoustics,

437–439
deception detection, approach, 433–437
deception detection, overview, 424–427
deep learning, 464
grounding, 36
order-embeddings, 31
userstate and trait recognition, 145–146,

151–152
video description, 108, 111

Late classification combinations, 52
Late fusion, 103–104

affect detection, 175
social signals, 208–209
studies, 234
userstate and trait recognition, 140

Late integration in classifying multimodal
data, 58–60
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depression behavioral signals, 382
incongruent modalities, 273
recognizing, 245–246

Layers
hidden, 5, 8
intermediate fusion, 104–105
late fusion, 103–104

LBP-TOP method, 384–386
LBPs (Local Binary Patterns)

facial expressions, 86
multimodal frameworks, 397

Learners
description, 51
mental state assessment. See Multimodal

learning analytics
multimodal data, 49–51
training, 52–54

Learning Analytics and Knowledge
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Learning and learning analytics, 331
defined, 333
multimodal. See Multimodal learning

analytics
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Learning-centered affective states, 182–183
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deception detection, 435
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Light pens, 1
Limited-resource theories in multimodal
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Lindblom, B., H&H Theory, 357
Linguistic Inquiry and Word Count (LIWC),

424–427, 435
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424–427, 435
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multisensory and multimodal speech processing and scene analysis, with applica-
tions to human-computer interaction and ambient intelligence. He has authored
over 120 articles and has 7 patents. He received a Diploma degree from the Na-
tional Technical University of Athens, and a M.Sc. and Ph.D. from Johns Hopkins
University, all in electrical and computer engineering. In addition to his academic
experience, he has worked at AT&T Research Labs, IBM Thomas J. Watson Research
Center (US), and at the FORTH and NCSR ‘Demokritos’ Research Centers in Greece.
(Contact: gpotam@ieee.org)

Björn Schuller (University of Augsburg and Imperial College London) is currently
ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing at University of
Augsburg and Reader in Machine Learning at Imperial College. He is best known for
his work on multisensorial/multimodal intelligent signal processing for affective,
behavioral, and human-centered computing. In 2015 and 2016, he was honored
by the World Economic Forum as one of 40/50 extraordinary scientists under age
40. In 2018, he was elevated to Fellow of the IEEE and Senior Member of the ACM.
He has published over 700 peer-reviewed scientific contributions across a range
of disciplines and venues, and is Editor-in-Chief of IEEE Transactions on Affective
Computing. His books include Intelligent Audio Analysis (2013, Springer) and Com-
putational Paralinguistics (2013, Wiley). (Contact: bjoern.schuller@imperial.ec.uk)
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Daniel Sonntag (German Research Center for Artificial Intelligence, DFKI) is a Prin-
cipal Researcher and Research Fellow. His research interests include multimodal
and mobile AI-based interfaces, common-sense modeling, and explainable ma-
chine learning methods for cognitive computing and improved usability. He has
published over 130 scientific articles and was the recipient of the German High
Tech Champion Award in 2011 and the AAAI Recognition and IAAI Deployed Appli-
cation Award in 2013. He is the Editor-in-Chief of the German Journal on Artificial
Intelligence (KI) and editor-in-chief of Springer’s Cognitive Technologies book se-
ries. Currently, he leads both national and European projects from the Federal
Ministry of Education and Research, the Federal Ministry for Economic Affairs and
Energy, and Horizon 2020. (Contact: daniel.sonntag@dfki.de)

Authors and Challenge Discussants
Mohamed Abouelenien (University of Michigan-Dearborn) is an Assistant Profes-
sor in the Department of Computer and Information Science at the University of
Michigan-Dearborn. He was a Postdoctoral Research Fellow in the Electrical En-
gineering and Computer Science Department at the University of Michigan, Ann
Arbor from 2014–2017. In 2013, he received his Ph.D. in Computer Science and
Engineering from the University of North Texas. His areas of interest broadly cover
data science topics, including applied machine learning, computer vision, and nat-
ural language processing. He has worked on a number of projects in these areas,
including affective computing, deception detection, ensemble learning, video and
image processing, face and action recognition, and others. His recent research
involves data analytics projects as well as modeling of human behavior for differ-
ent applications. Abouelenien has published extensively in international journals
and conferences in IEEE, ACM, Springer, and SPIE. He also served as the chair
for the ACM Workshop on Multimodal Deception Detection, a reviewer for IEEE
Transactions and Elsevier journals, and a program committee member for multiple
international conferences.

Chaitanya Ahuja (Carnegie Mellon University) is a doctoral candidate at the Lan-
guage Technologies Institute in the School of Computer Science at Carnegie Mellon
University. His interests range in various topics in natural language, computer vi-
sion, computational music, and machine learning. Before starting graduate school,
Chaitanya completed his Bachelor’s degree at the Indian Institute of Technology,
Kanpur, with a research focus on spatial audio.



502 Biographies

Ethem Alpaydin (Bogazici University) received his degree of Docteur es Sciences
from École Polytechnique Fédérale de Lausanne in 1990. Currently, he is a Pro-
fessor in the Department of Computer Engineering of Bogazici University and a
member of The Science Academy, Istanbul. As a visiting researcher, he worked in
the Department of Brain and Cognitive Sciences at MIT in 1994, at the Interna-
tional Computer Science Institute at UC Berkeley in 1997, at the Idiap Research
Institute in Switzerland in 1998, and at TU Delft in 2014. He was a Fulbright Senior
Scholar in 1997/1998 and received the Research Excellence Award from the Bogazici
University Foundation in 1998 (junior faculty) and 2008 (senior faculty), the Young
Scientist Award from the Turkish Academy of Sciences in 2001, and the Scientific
Encouragement Award from the Turkish Scientific and Technical Research Coun-
cil in 2002. His book Introduction to Machine Learning, published by MIT Press, is
now in its third edition and was translated into Chinese, German, and Turkish.
Machine Learning: The New AI was also published by MIT Press as part of the Es-
sential Knowledge Series in 2016, and has since been translated into Russian and
Japanese. He is a senior Member of the IEEE and an Editorial Board Member of the
Pattern Recognition journal, published by Elsevier.

Mehdi Ammi (University of Paris-Saclay) is an Associate Professor at the University
of Paris-Saclay. He is also the head of the Pervasive and Ubiquitous Environments
team and member of the Architecture and Models for Interaction group at the
multidisciplinary LIMSI-CNRS lab. He earned his Ph.D. at the University of Orleans
in 2005 with an emphasis on robotics and virtual reality.

Michel-Ange Amorim (Université Paris-Sud) is a Full Professor at the Université
Paris-Sud (UPSUD), Université Paris-Saclay, Orsay, France. He received his Ph.D.
in cognitive psychology from Université René Descartes, Paris, France, in 1997.
At UPSUD, he leads CIAMS, a multidisciplinary laboratory investigating human
movement, including motor control, psychology, biomechanics, physiology, and
behavioral and cognitive neuroscience. His research interests are in embodied cog-
nition combining psychophysics—the Information Integration Theory approach—
with neuroimaging techniques in normals and patients, in order to decipher the
neurocognitive processes underlying spatial and motoric embodiment of self, self-
environment, and self-other relationships.

Elisabeth André (Augsburg University) is a Full Professor of Computer Science and
Founding Chair of Human-Centered Multimedia at Augsburg University in Ger-
many. She has a long track record in multimodal human-machine interaction,
embodied conversational agents, social robotics, affective computing, and social
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signal processing. Elisabeth André has served as a General and Program Co-Chair
of major international conferences, including ACM International Conference on
Intelligent User Interfaces (IUI), ACM International Conference on Multimodal
Interfaces (ICMI), and International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS). In 2010, Elisabeth André was elected a member of the
prestigious Academy of Europe, the German Academy of Sciences Leopoldina, and
AcademiaNet. To honor her achievements in bringing artificial intelligence tech-
niques to HCI, she was awarded a EurAI (European Coordinating Committee for
Artificial Intelligence) fellowship in 2013. Most recently, she was elected to the CHI
Academy, an honorary group of leaders in the field of human-computer interaction.

Syed Z. Arshad (University of New South Wales) has a Ph.D. in computer science
from the University of New South Wales, Australia. He is a member of IEEE, ACM,
SIGCHI, and SIGKDD. His research interests include cognitive computing, intelli-
gent user interfaces, machine learning, and data visualization techniques.

Tadas Baltrušaitis (Microsoft) is a scientist at Microsoft in Cambridge, UK. His pri-
mary research interests lie in the automatic understanding of non-verbal human
behavior, computer vision, and multimodal machine learning. In particular, he is
interested in the application of such technologies to healthcare settings, with a fo-
cus on mental health. Before joining Microsoft, he was a post-doctoral researcher
at Carnegie Mellon University, working on multimodal machine learning and auto-
matic facial behavior analysis. He received his Ph.D. at the University of Cambridge,
where his work focused on automatic facial expression analysis in especially diffi-
cult real-world settings.

Samy Bengio (Google) has been a research scientist at Google since 2007. Before
that, he had been a senior researcher in statistical machine learning at IDIAP Re-
search Institute, where he supervised Ph.D. students and postdoctoral fellows. His
research interests span many areas of machine learning such as deep architec-
tures, representation learning, sequence processing, speech recognition, image
understanding, support vector machines, mixture models, large-scale problems,
multi-modal (face and voice) person authentication, brain–computer interfaces,
and document retrieval. He was the program chair of NIPS 2017 and ICLR 2015
and 2016; was the general chair of BayLearn 2012–2015, the Workshops on Machine
Learning for Multimodal Interactions (MLMI) 2004–2006, and the IEEE Workshop
on Neural Networks for Signal Processing (NNSP) in 2002; and served on the pro-
gram committees of several international conferences such as NIPS, ICML, ICLR,
ECML and IJCAI.
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Nigel Bosch (University of Illinois at Urbana-Champaign) is a postdoctoral re-
searcher with the National Center for Supercomputing Applications. His research
utilizes data mining and machine learning techniques to understand human ex-
periences including emotion, cognition, and behavior. His current interests are
focused on developing methods to model new forms of big multimodal data in on-
line educational contexts, as well as studying the ethical implications of machine
learning models trained in these contexts. He received his Ph.D. in computer sci-
ence from the University of Notre Dame.

Mihai Burzo (University of Michigan-Flint) is an Assistant Professor of Mechani-
cal Engineering at the University of Michigan-Flint. Prior to joining University of
Michigan in 2013, he was an Assistant Professor at University of North Texas. His
research interests include heat transfer in microelectronics and nanostructures,
thermal properties of thin films of new and existing materials, multimodal sens-
ing of human behavior, and computational modeling of forced and natural heat
convection. He has published over 50 articles in peer-reviewed journals and confer-
ence proceedings. He is the recipient of several awards, including the 2006 Harvey
Rosten Award For Excellence for “outstanding work in the field of thermal analysis
of electronic equipment,” best paper award at the Semitherm conferences in 2013
and 2006, Young Engineer of the Year from the North Texas Section of ASME in
2006, and Leadership Award from SMU in 2002.

Fang Chen (DATA61, CSIRO) is a Senior Principal Research Scientist of Analytics
in DATA61, CSIRO. She holds a Ph.D. in Signal and Information Processing, an
M.Sc. and B.Sc. in Telecommunications and Electronic Systems, respectively, and
an MBA. Her research interests are behavior analytics, machine learning, and
pattern recognition in human and system performance prediction and evaluation.
She has done extensive work on human-machine interaction and cognitive load
modeling. She pioneered the theoretical framework of measuring cognitive load
through multimodal human behavior and provided much of the empirical evidence
on using human behavior signals and physiological responses to measure and
monitor cognitive load.

Huili Chen (MIT) is a Ph.D. student at the MIT Media Lab. She obtained a Bachelor
of Arts degree in Psychology and earned a Bachelor of Science degree in Computer
Science from the University of Notre Dame in 2016. She is very interested in human-
machine interaction and interactive artificial intelligence.

Lei Chen (Liulishuo Inc.) is a Principal Research Scientist at Liulishuo’s AI Lab
located in Silicon Valley who explores using AI technologies on improving language
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education. Prior to Liulishuo, he worked at Educational Testing Service (ETS) from
2008–2017. At ETS, his research focused on the automated assessment of spoken
language using speech recognition, natural language processing, and machine
learning technologies. Since 2013, he has been working on multimodal signal
processing technology for assessing video-based performance tests in areas such
as public-speaking. In the 2009 International Conference of Multimodal Interface
(ICMI), he won the Outstanding Paper Award sponsored by Google. He received a
B.Eng. degree from Tianjin University in China, an M.Sc. degree from the Chinese
Academy of Science (CAS), and a Ph.D. degree from Purdue University. All of his
degrees are in electrical engineering.

Céline Clavel (Université Paris-Sud) received a Ph.D. in Cognitive Psychology from
the Université Paris Ouest Nanterre La Défense in 2007. In September 2010, she
became an Assistant Professor at Université Paris-Sud and teaches in the depart-
ment of Accounting and Management in the Sceaux Institute of Applied Sciences
and in the Ergonomic Master. Her research is focused on the emotional process in
a virtual or real social interaction context and on the multi-user multimodal inter-
actions in Collaborative Virtual Environments (CVEs). Her main research interest
is to specify the psychology models to computer science applications and evaluate
their contributions and/or study their impacts on behavior.

Jeffrey Cohn , Ph.D. (University of Pittsburg and Carnegie Mellon University), is
Professor of Psychology and Psychiatry at the University of Pittsburgh and Adjunct
Professor at the Robotics Institute, Carnegie Mellon University. He leads interdis-
ciplinary and inter-institutional efforts to develop advanced methods of automatic
analysis and synthesis of face and body movement and applies them to research
in human emotion, communication, psychopathology, and biomedicine. His re-
search has been supported by grants from the U.S. National Institutes of Health and
U.S. National Science Foundation, among other sponsors. He chairs the Steering
Committee of the IEEE International Conference on Automatic Face and Gesture
Recognition (FG) and has served as General Chair of international conferences on
automatic face and gesture recognition, affective computing, and multimodal in-
terfaces.

Matthieu Courgeon (École Nationale d’Ingénieurs de Brest) defended his Ph.D. the-
sis in 2011 on affective computing and interactive autonomous virtual characters.
He is the creator of the Multimodal Affective and Reactive Characters toolkit, used
by several research teams around the world. His research area spans interactive ex-
pressive artificial humans and robots to collaborative immersive virtual reality. He
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earned a Best Paper Award at Ubicomp 2013 for his work with expressive virtual
humans with the Affective Computing team at the MIT Medialab.

Dr. Nicholas Cummins (University of Augsburg) is a habilitation candidate at the
Chair of Embedded Intelligence for Health Care and Wellbeing at the University of
Augsburg. He received his Ph.D. in Electrical Engineering from UNSW Australia in
February 2016. He is currently involved in the Horizon 2020 projects DE-ENIGMA,
RADAR-CNS, and TAPAS. His current research interests include multisenory signal
analysis, affective computing, and computer audition with a particular focus on the
understanding and analysis of different health states. He has (co)authored over 50
conference and journal papers (over 400 citations, h-index 12). Dr. Cummins is a
reviewer for IEEE, ACM, and ISCA journals and conferences, as well as serving on
their program and organizational committees. He is a member of ACM, ISCA, IEEE,
and the IET.

Li Deng (Citadel) has been the Chief Artificial Intelligence Officer of Citadel since
May 2017. Prior to Citadel, he was the Chief Scientist of AI, the founder of Deep
Learning Technology Center, and Partner Research Manager at Microsoft (2000–
2017). Prior to Microsoft, he was a tenured full professor at the University of Water-
loo and held teaching and research positions at Massachusetts Institute of Technol-
ogy (1992–1993), Advanced Telecommunications Research Institute (1997–1998),
and HK University of Science and Technology (1995). He has been a Fellow of the
IEEE since 2004, a Fellow of the Acoustical Society of America since 1993, and a
Fellow of the ISCA since 2011. He has also been an Affiliate Professor at Univer-
sity of Washington, Seattle, since 2000. He was elected to the Board of Governors
of the IEEE Signal Processing Society and served as editor-in-chief of the IEEE Sig-
nal Processing Magazine and IEEE/ACM Transactions on Audio, Speech, and Language
Processing from 2008–2014, for which he received the IEEE SPS Meritorious Service
Award. In recognition of his pioneering work on disrupting the speech recognition
industry using large-scale deep learning, he received the 2015 IEEE SPS Technical
Achievement Award for “Outstanding Contributions to Automatic Speech Recogni-
tion and Deep Learning.” He also received numerous best paper and patent awards
for contributions to artificial intelligence, machine learning, information retrieval,
multimedia signal processing, speech processing and recognition, and human lan-
guage technology. He is an author or co-author of six technical books on deep
learning, speech processing, pattern recognition and machine learning, and natu-
ral language processing.

Sidney D’Mello (University of Colorado Boulder) is an Associate Professor in the In-
stitute of Cognitive Science and Department of Computer Science at the University
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of Colorado Boulder. He is interested in the dynamic interplay between cognition
and emotion while individuals and groups engage in complex real-world tasks. He
applies insights gleaned from this basic research program to develop intelligent
technologies that help people achieve their fullest potential by coordinating what
they think and feel with what they know and do. D’Mello has co-edited 6 books and
published over 220 journal papers, book chapters, and conference proceedings (13
of these have received awards). His work has been funded by numerous grants and
he serves or has served as associate editor for four journals and on the editorial
boards for six others while also playing leadership roles in several professional or-
ganizations.

Julien Epps (UNSW Sydney and Data61, CSIRO) is an Associate Professor of Signal
Processing with UNSW Sydney and a Contributed Principal Researcher at Data61,
CSIRO. He has authored or co-authored more than 200 publications and 4 patents,
mainly on topics related to emotion and mental state recognition of speech and
behavioral signals. He is serving as an Associate Editor for IEEE Transactions on
Affective Computing and Frontiers in ICT (the Human-Media Interaction and Psy-
chology sections), and he recently served as a member of the Advisory Board of
the ACM International Conference on Multimodal Interaction. He has delivered
invited tutorials on topics related to this book for major conferences, including
INTERSPEECH 2014 and 2015 and APSIPA 2010, and invited keynotes for the 4th
International Workshop on Audio-Visual Emotion Challenge (part of ACM Multi-
media 2014) and the 4th International Workshop on Context-Based Affect Recog-
nition (part of AAAC/IEEE Affective Computing and Intelligent Interaction 2017).

Marc Ernst (Ulm University) heads the Department of Applied Cognitive Psychology
at Ulm University. He studied physics in Heidelberg and Frankfurt/Main. In 2000,
he received his Ph.D. from the Eberhard-Karls-University Tübingen for investiga-
tions into the human visuomotor behavior that he conducted at the Max Planck In-
stitute for Biological Cybernetics. For this work, he was awarded the Attempto-Prize
from the University of Tübingen and the Otto-Hahn-Medaille from the Max Planck
Society. He was a research associate at the University of California, Berkeley working
with Prof. Martin Banks on psychophysical experiments and computational mod-
els investigating the integration of visual-haptic information before returning to
the MPI in Tübingen and becoming principle investigator of the Sensorimotor Lab
in the Department of Professor Heinrich Bülthoff. In 2007, he became leader of
the Max Planck Research Group on Human Multisensory Perception and Action,
before joining the University of Bielefeld and the Cognitive Interaction Technology
Center of Excellence (CITEC) in 2011.
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Anna Esposito (Wright State University) received her Laurea degree summa cum
laude in Information Technology and Computer Science from the Università di
Salerno in 1989 with the thesis “The Behavior and Learning of a Deterministic Neu-
ral Net” (published in Complex System, 6(6), 507–517, 1992). She received her Ph.D.
in Applied Mathematics and Computer Science from the Università di Napoli Fed-
erico II in 1995. Her Ph.D. thesis “Vowel Height and Consonantal Voicing Effects:
Data from Italian” (published in Phonetica, 59(4),197–231, 2002) was developed at
the MIT Research Laboratory of Electronics (RLE), under the supervision of profes-
sor Kenneth N. Stevens. She completed a postdoctoral program at the International
Institute for Advanced Scientific Studies (IIASS), and was Assistant Professor in the
Department of Physics at Università di Salerno, where she taught classes on cyber-
netics, neural networks, and speech processing (1996–2000). She was a Research
Professor in the Department of Computer Science and Engineering at Wright State
University (WSU) (2000–2002). She is currently a Research Affiliate at WSU and Asso-
ciate Professor in Computer Science in the Department of Psychology at Università
della Campania Luigi Vanvitelli. She has authored more than 170 peer-reviewed
publications in international journals, books, and conference proceedings and
edited or co-edited over 25 international books with Italian, EU, and overseas col-
leagues.

Yoren Gaffary (Insa Rennes) is an expert research engineer on haptic simulations
in virtual environments at Insa Rennes, France. His research interests are in affec-
tive computing, haptics, and augmented reality. He received a Master’s degree in
Information, Learning, and Cognition at Université Paris-Sud. His Ph.D.thesis, also
at Université Paris-Sud, concerned affective computing using mediated touch with
robotic devices coupled with virtual humans.

Roland Goecke (University of Canberra) is Professor of Affective Computing in the
School of Information Technology & Systems in the Faculty of Science & Technology
at the University of Canberra. Professor Goecke holds a Master’s degree in Com-
puter Science (1998) from the University of Rostock, Germany, and a Ph.D. (2004)
in Computer Science from the Australian National University, Canberra, Australia.
Prior to joining the University of Canberra in 2008, he worked as a Senior Research
Scientist with Seeing Machines, as a Researcher at the NICTA Canberra Research
Lab, and as a Research Fellow at the Fraunhofer Institute for Computer Graph-
ics, Germany. His research interests are in affective computing, computational
behavior analysis, social signal processing, pattern recognition, computer vision,
human-computer interaction, multimodal signal processing, and e-research.
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Joseph F. Grafsgaard (University of Colorado Boulder) received a B.A. in Computer
Science from the University of Minnesota Twin Cities in 2005, and M.Sc. and Ph.D.
degrees in Computer Science from North Carolina State University in 2012 and
2014, respectively. He is currently a postdoctoral research associate at the Institute
of Cognitive Science at the University of Colorado Boulder. His research interests
include affective computing, advanced learning technologies, detection/modeling
of nonverbal behavior and physiology, and multimodal affective interaction. He is
a member of the Association for the Advancement of Affective Computing (AAAC),
the ACM, the IAIED Society, the IEDM Society, and the IEEE.

Jyoti Joshi (University of Canberra) is a postdoctoral researcher at the University
of Waterloo. She earned a Ph.D. at the Human-Centred Computing lab at the Uni-
versity of Canberra, Australia, and is supervised by Prof. Roland Goecke and Prof.
Michael Wagner. Before starting her Ph.D., she worked as a research assistant with
Vision and Sensing Group, University of Canberra. She also worked as a consultant
at a leading EDA company Cadence Design Systems, India prior to coming to Aus-
tralia. Her current research revolves around applications of pattern recognition,
computer vision, and machine learning techniques with a focus on affect-based
multimedia analysis.

Gil Keren (University of Passau) is a doctoral student at the University of Passau,
Germany. Prior to that, he completed Bachelor’s and Master’s degrees in Psychol-
ogy and Mathematics at Ben Gurion University, Israel. He conducts research and
publishes academic papers on the topics of artificial neural networks, artificial in-
telligence, and models of human cognition.

Jean-Claude Martin (Université Paris-Sud) is first-class Full Professor of Computer
Science at Université Paris-Sud. He is the head of the pluridisciplinary Cogni-
tion Perception Use research group at LIMSI-CNRS. He conducts research on the
sensory-motor bases of social cognition in humans and in multimodal interfaces,
such as expressive virtual agents and social robots. He considers several appli-
cation areas related to social skills training: autism; job and medical interviews;
virtual coaches; leadership and teamwork; stress management; and sports and
e-Health. He is the Editor-in-Chief of the Springer Journal on Multimodal User In-
terfaces (JMUI). He has been involved in several projects about how we perceive
(in)congruent blends of expressions of emotions in several modalities. He super-
vised and co-supervised 14 defended Ph.D. theses.

Rada Mihalcea (University of Michigan) is a Professor in the Computer Science
and Engineering department at the University of Michigan. Her research interests
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are in computational linguistics with a focus on lexical semantics, computational
social sciences, and conversational interfaces. She serves or has served on the
editorial boards of the Journals of Computational Linguistics, Language Resources and
Evaluations, Natural Language Engineering, Research in Language in Computation,
IEEE Transactions on Affective Computing, and Transactions of the Association for
Computational Linguistics. She was a program co-chair for the Conferences of the
Association for Computational Linguistics (2011) and the Empirical Methods in
Natural Language Processing (2009), and general chair for the Conference of the
North American Chapter of the Association for Computational Linguistics (2015).
She is the recipient of a National Science Foundation CAREER award (2008) and a
Presidential Early Career Award for Scientists and Engineers (2009).

Louis-Philippe Morency (Carnegie Mellon University) is Assistant Professor in the
Language Technology Institute at Carnegie Mellon University, where he leads the
Multimodal Communication and Machine Learning Laboratory (MultiComp Lab).
He was formerly a research assistant professor in the Computer Sciences Depart-
ment at the University of Southern California and a research scientist at the USC
Institute for Creative Technologies. Professor Morency received his Ph.D. and Mas-
ter’s degrees from MIT Computer Science and Artificial Intelligence Laboratory. His
research focuses on building the computational foundations to enable computers
with the abilities to analyze, recognize, and predict subtle human communica-
tive behaviors during social interactions. In particular, Professor Morency was lead
co-investigator for the multi-institution effort that created SimSensei and Multi-
Sense, two technologies to automatically assess nonverbal behavior indicators of
psychological distress. He is currently chair of the advisory committee for ACM
International Conference on Multimodal Interaction and associate editor at IEEE
Transactions on Affective Computing.

Amr El-Desoky Mousa (Apple Inc.) received his Ph.D. in 2014 from the Chair of
Human Language Technology and Pattern Recognition at RWTH Aachen Univer-
sity, Germany, where his research was focused on automatic speech recognition. In
2014–2015, he worked as a postdoctoral researcher at the Machine Intelligence and
Signal Processing Group at the Technical University of Munich, Germany. In 2016–
2017, he worked as a Research and Teaching Associate at the Chair of Complex
and Intelligent Systems, University of Passau, Germany. In June 2017, he moved
to Apple Inc. to work as a senior Machine Learning Engineer taking part in the re-
search and development related to Siri, one of the most well-known speech-based
Intelligent Assistants in the world. His main research interests include deep learn-
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ing, large vocabulary continuous speech recognition, language modeling, acoustic
modeling, and natural language processing.

Xavier Ochoa (Escuela Superior Politécnica del Litoral) is currently a Full Profes-
sor in the Faculty of Electrical and Computer Engineering at Escuela Superior
Politécnica del Litoral (ESPOL) in Guayaquil, Ecuador. He directs the Information
Technology Center (CTI) and the research group on Teaching and Learning Tech-
nologies (TEA) at ESPOL. He is currently the Vice President of the Society for the
Research in Learning Analytics (SoLAR), member of the coordination team of the
Latin American Community on Learning Technologies (LACLO), and president of
the Latin American Open Textbooks Initiative (LATIn). He is editor of the Journal of
Learning Analytics and member of the Editorial Board of the IEEE Transactions on
Learning Technologies. He coordinates several regional and international projects
in the field of learning technologies. His main research interests revolve around
learning analytics, multimodal learning analytics, and data science.

Yannis Panagakis (Middlesex University and Imperial College London) is an assis-
tant professor at Middlesex University London and research faculty at the Depart-
ment of Computing, Imperial College London. His research interests lie in machine
learning and its interface with signal processing, high-dimensional statistics, and
computational optimization. Specifically, Yannis is working on models and algo-
rithms for robust and efficient learning from high-dimensional data and signals
representing audio, visual, affective, and social phenomena. He received his M.Sc.
and Ph.D. from the Department of Informatics at Aristotle University of Thessa-
loniki and his B.Sc. in Informatics and Telecommunication from the University of
Athens, Greece. Yannis has been awarded the prestigious Marie-Curie Fellowship,
among various scholarships and awards for his studies and research.

Maja Pantíc (Imperial College London) is a Professor of Affective and Behavioral
Computing and leader of the i.BUG group at Imperial College London, working
on machine analysis of human non-verbal behavior and its applications to human-
computer, human-robot, and computer-mediated human-human interaction. Pro-
fessor Pantić has published more than 250 technical papers in the areas of ma-
chine analysis of facial expressions, machine analysis of human body gestures,
audiovisual analysis of emotions and social signals, and human-centered machine
interfaces. She has served as the keynote speaker, chair and co-chair, and an orga-
nization or program committee member at numerous conferences in her areas of
expertise. She received a B.Sc. from Delft University in 1995, followed by an M.Sc.
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in Artificial Intelligence in 1997. Pantić earned a Ph.D. in 2001 at the Delft Uni-
versity of Technology, with a thesis on facial expression analysis by computational
intelligence techniques.

Veronica Perez-Rosas (University of Michigan) is an Assistant Research Scientist
of Computer Science and Engineering at the University of Michigan. Her main re-
search interest areas are natural language processing (NLP), computational linguis-
tics, applied machine learning, and multimodal interaction. Her work examines
human communication to build computational models able to analyze, recognize,
and predict affect-related behaviors during social interaction. She has developed
methods that make use of multimodal information present during the social inter-
action (verbal and non-verbal) and combine data-driven approaches with linguistic
and psycho-linguistic knowledge to build novel solutions to diverse NLP problems
such as sentiment analysis and deception detection. She has publications in rep-
utable journals and conferences, including IEEE, ACM, and ACL. She also served
as a reviewer for IEEE Transactions and Elsevier journals and served as a program
committee member for multiple international conferences in the NLP community.

Olivier Pietquin (Google) completed his Ph.D. under the Faculty of Engineering at
l’Universiste de Mons, Belgium, and the University of Sheffield, UK. He then did a
postdoctoral program with Philips in Germany before joining the Ecole Supérieure
d’Electricité, France, in 2005, as an Associate Professor and, later, Professor. He
headed the computer science program of the UMI GeorgiaTech-CNRS (joint lab
in Metz) and also worked with the INSERM IADI team. In 2013, he moved to
the University of Lille, France, as a Full Professor and joined the Inria SequeL
(Sequential Learning) team. Since 2016, Olivier has been on leave with Google, first
with DeepMind in London, and then with Brain in Paris. His current research is
about direct and inverse reinforcement learning, learning from demonstrations,
and applications to human-machine interaction.

Fabio Ramos (University of Sydney) is an Associate Professor in Machine Learning
and Robotics at the School of Information Technologies and co-Director of the Cen-
tre for Translational Data Science at the University of Sydney. He received B.Sc. and
M.Sc. degrees in Mechatronics Engineering at the University of Sao Paulo, Brazil,
in 2001 and 2003, respectively, and a Ph.D. at the University of Sydney, Australia,
in 2008. He was an ARC postdoctoral fellow from 2008–2010, and an ARC DECRA
fellow from 2012–2014. He has authored over 130 peer-reviewed publications and
received numerous awards. His research focuses on statistical machine learning
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Accumulative GSR refers to the summation of GSR values over the task time. If the
GSR is considered as a continuous signal over time, the accumulative GSR is the
integration of GSR values over the task time.

Action units and action descriptors are the smallest visually discriminable facial
movements. Action units are movements for which the anatomic basis is known
[Cohn, Ambadar, & Ekman, 2007]. They are represented as either binary events
(presence vs. absence) or with respect to five levels of ordinal intensity. Action
units individually or in combinations can represent nearly all possible facial
expressions.

Active Appearance Model (AAM). An AAM is a statistical model of shape and
grey-level appearance that can generalize to almost any face [Edwards, Taylor,
& Cootes, 1998; Matthews & Baker, 2004]. An AAM seeks to find the model
parameters that can generate a synthetic image as close as possible to a
target image [Cootes & Taylor, 2004]. AAMs are learned from hand-labelled
training data.

Affect. Broad term encompassing constructs such as emotions, moods, and
feelings. Is not the same as personality, motivation, and other related terms.

Affect and social signals can be described as temporal patterns of a multiplicity of
non-verbal behavioral cues which last for a short time [Vinciarelli et al. 2009] and
are expressed as changes in neuromuscular and physiological activity [Vinciarelli
et al. 2008a]. Sometimes, we consciously draw on affect and social signals to alter
the interpretation of a situation, e.g. by saying something in a sarcastic voice
to signal that we actually mean the opposite. At another time, we use them
without being aware of it, e.g., by showing sympathy towards our counterpart
by mimicking his or her verbal and nonverbal expressions. See Chapter 7 of
this volume for an overview of affective and social signals for which automated
recognition approaches have been proposed.
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Affect annotation. The process of assigning affective labels (e.g., bored, confused,
aroused) or values (e.g., arousal = 5) to data (e.g., video, audio, text).

Affective computing. Computing techniques and applications involving emotion
or affect.

Affective computing and social signal processing aims at perceiving and interpret-
ing nonverbal behavior with a machine by detecting affect and social signals
just as humans do among themselves. This will lead to a new generation of com-
puters that is perceived as more natural, efficacious and trustworthy [Vinciarelli
et al. 2008b, Vinciarelli et al. 2009], and it makes room for a more human-like
and intuitive interaction [Pantic et al. 2007].

Affective experience-expression link. The relationship between experiencing an
affective state (e.g., feeling confused) and expressing it (e.g., displaying a
furrowed brow).

Affective ground truth. Objective reality involving the “true” affective state. Is a
misleading term for psychological constructs like affect.

Alignment A third challenge is to identify the direct relations between (sub)-
elements from two or more different modalities. For example, we may want
to align the steps in a recipe to a video showing the dish being made. To tackle
this challenge we need to measure similarity between different modalities and
deal with possible long-range dependencies and ambiguities.

Classifier: in pattern recognition and machine learning, it is a function that maps
an object of interest (represented through a set of physical measurements called
features) into one of the classes or categories such an object can belong to (the
number of classes or categories is finite).

Bag-of-words (BoW) is a data-driven algorithm for summarizing large volumes of
features. It can be thought of as a histogram whose bins are determined by
partitions (or clusters) of the feature space.

Canonical Correlation Analysis (CCA) is a tool to infer information based on cross-
covariance matrices. It can be used to identify correlation across heterogeneous
modalities or sensor signals. Let each modality be represented by a feature
vector and let us assume there is correlation across these, such as is in
audiovisual speech recognition. Then, CCA will identify linear combinations
of the individual features with maximum correlation amongst each other.

Classifier Combination: in pattern recognition and machine learning, it is a body of
methodologies aimed at jointly using multiple classifiers to achieve a collective
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performance higher—to a statistically significant extent—than the individual
performance of any individual classifier.

Classifier Diversity: in a set of classifiers that are being combined combined, the
diversity is the tendency of different classifiers to have different performance in
different regions of the input space.

Cognitive load is a multidimensional construct that refers to the momentary
working memory load experienced by a person while performing a cognitive
task. It can be increased by a wide variety of factors, including the difficulty
of a task, the materials or tools used (e.g., computer interface), the situational
context (e.g., distracting vs. quiet setting), the social context (e.g., working
individually, vs. jointly with a group), a person’s expertise in the domain, a
person’s physiological stress level, and so forth. Cognitive Load Theory describes
cognitive load as having three components—intrinsic load, extraneous load,
and germane load [Sweller et al. 2011]. For a detailed discussion of the dynamic
and often non-linear interplay between cognitive load and domain expertise,
including how cognitive load can either expand or minimize the performance
gap between low- and high-performing students, see Oviatt [2013].

Cognitive load measurement refers to the methods to quantitatively discriminate
the different levels of cognitive load experienced by the user. Usually the
cognitive load is induced with varied task difficulty (i.e. the extraneous load is
manipulated), and the methods to discriminate cognitive load include subjective
methods, performance-based methods, physiological methods and behavioral
methods.

Co-learning A fifth challenge is to transfer knowledge between modalities, their
representation, and their predictive models. This is exemplified by algorithms of
co-training, conceptual grounding, and zero shot learning. Co-learning explores
how knowledge learning from one modality can help a computational model
trained on a different modality. This challenge is particularly relevant when one
of the modalities has limited resources (e.g., annotated data).

Communication: process between two or more agents aimed at the exchange of
information or at the mutual modification of beliefs, shared or individual.

Confidence measure is the information on the assumed certainty of a decision
made by a machine learning algorithm.

Congruent expressions of affects. A multimodal combination is said to involve
congruent expressions of affects if each modality is conveying the same affect
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in terms of the category or the dimension (e.g., the facial expressions express
anger and the hand gestures also express anger).

Cooperative learning in machine learning is a combination of active learning and
semi-supervised learning. In the semi-supervised learning part, the machine
learning algorithm labels unlabeled data based on its own previously learned
model. In the active learning part, it identifies which unlabeled data is most
important to be labeled by humans. Usually, cooperative learning tries to
minimize the amount of data to be labeled by humans while maximizing the gain
in accuracy of a learning algorithm. This can be based on confidence measures
such that the machine labels unlabeled data itself as long as it is sufficiently
confident in its decisions. It asks humans for help only where its confidence is
insufficient, but the data seem to be highly informative.

Construct. A conceptual variable that cannot be directly observed (e.g., intelligence,
personality).

Continuous or discrete (i.e., categorical) representation refer to the modeling of a
user state or trait. As an example, the age of a user can be modeled as continuum
such as the age in years. As opposed to this, a discretized representation would
be broader age classes such as “young,” “adult’s”, and “elderly.” In addition, the
time can be discretized or continuous (in fact, it is always discretized in some
respect—at least by the sample rate of the digitized sampling of the sensor
signals). However, one would speak of continuous measurement if processing
is delivering a continuous output stream on a (short) frame-by-frame basis rather
than an asynchronous processing of (larger) segments or chunks of the signal
such as per spoken word or per body gesture.

A Convolutional Neural Network (CNN) is a neural network that contains one or
more convolutional layers. A convolutional layer is a layer that processes an
image (or any other data comprised of points with a notion of distance between
these points, such as an audio signal) by convolving it with a number of kernels.

A correlation is a single number that describes the degree of relationship between
two variables (signals). It most often refers to how close two variables are to
having a linear relationship with each other.

A dense layer is the basic type of layer in a neural network. The layer takes a
one-dimensional vector as input and transforms it to another one-dimensional
vector by multiplying it by a weight matrix and adding a bias vector.

Depression refers broadly to the persistence over an extended period of time of sev-
eral of the following symptoms: lowered mood, interest, or pleasure; psychomo-
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tor retardation; psychomotor agitation; diminished ability to think/concentrate;
increased indecisiveness; fatigue or loss of energy; insomnia; hypersomnia; sig-
nificant weight loss or weight gain; feelings of worthlessness or excessive guilt;
and recurrent thoughts of death or recurrent suicidal ideation. It is important to
note that there are multiple definitions of depression (see references in Section
12.2).

Domain adaptation refers to machine learning methods that learn from a source
data distribution a well performing model on a different (but related) target data
distribution.

Domain expertise refers to the level of working knowledge and problem-solving
competence within a specific subject matter, such as algebra. It is a relatively
stable state that influences how a person perceives and strategizes solving a
problem. For the same task, a more expert student will group elements within
it into higher-level patterns, or perceive the problem in a more integrated
manner. A person’s level of domain expertise influences a variety of problem-
solving behaviors (e.g., fluency, effort expended, accuracy). A more expert person
also will experience lower cognitive load when working on the same problem
as a less expert person. Most people experience domain expertise in some
subjects. This everyday experience of domain expertise is distinct from elite
expert performance that occurs in a small minority of virtuosos or prodigies,
which can take a decade or lifetime to achieve.

Dynamic Time Warping (DTW) is a machine learning algorithm to align two
time series such as feature vectors extracted over time based on similarity
measurement. This similarity is often measured by distance measures such as
Euclidean distance or based on correlation such as when aligning heterogenous
modalities. A classical application example is speech recognition, where words
spoken at different speed are aligned in time to measure their similarity. DTW
aims at a maximized match between the two observation sequences usually
based on local and global alignment path search restrictions.

In early combination, the inputs from all the different modalities are concatenated
and fed to a single model. In late combination, for each modality there is a
separate model that makes a prediction based on its modality, and these model
predictions are later fused by a combining model.

Early fusion models are models for processing multimodal or multisensorial data,
in which a model is processing the concatenation of all the data representations
from the different modalities. In late fusion models, there is a unimodal model
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for each modality, and the outputs of all unimodal models are then combined
to a final prediction based on all modalities.

Encoder-decoder architectures in deep learning start with an encoder neural
network which—based on its input—usually outputs a feature map or vector.
The second part—the decoder—is a further network that—based on the
feature vector from the encoder—provides the closest match either to the
input or an intended output. The decoder is in most cases employing the
same network structure but in opposite orientation. Usually, the training is
carried out unsupervised data, i.e., without labels. The target for learning is
to minimize the reconstruction error, i.e., the delta between the input to the
encoder and the output of the decoder. A typical application is to use encoder-
decoder architectures for sequence-to-sequence mapping, such as in machine
translation where the encoder is trained on sequences (phrases) in one language
and the decoder is trained to map its representation to a sequence (phrase) in
another language.

An ensemble is a set of models and we want the models in the set to differ in their
predictions so that they make different errors. If we consider the space defined
by the three dimensions that define a model as we defined above, the idea is
to sample smartly from that space of learners. We want the individual models
to be as accurate as possible individually, and at the same time, we want them
to complement each other. How these two criteria affect the accuracy of the
ensemble depends on the way we do the combination.

From another perspective, we can view each particular model as one noisy
estimate to the real (unknown) underlying problem. For example, in a classi-
fication task, each base classifier, depending on its model, hyper-parameters,
and input features, learns one noisy estimator to the real discriminant. In
such a perspective, the ensemble approach corresponds to constructing a fi-
nal estimator from these noisy estimators—for example, voting corresponds to
averaging them.

When the different models use inputs in different modalities, there are three
ways in which the predictions of models can be combined, namely, early, late,
and intermediate combination/integration/fusion.

Extraneous load refers to the level of working memory load that a person experi-
ences due to the properties of materials or computer interfaces they are using
[Oviatt 2017].

FACS refers to the Facial Action Coding System [Ekman & Friesen, 1978; Ekman,
Friesen, & Hager, 2002]. FACS describes facial activity in terms of anatomically
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based action units (AUs). Depending on the version of FACS, there are 33 to 44
AUs and a large number of additional “action descriptors” and other movements.

Feature-level multimodal fusion. The process of integrating features from different
modalities using diverse methodologies such as concatenating the features
together (early fusion) or combining the models obtained from each modality
at decision level (late fusion).

Fusion A fourth challenge is to join information from two or more modalities to
perform a prediction. For example, for audio-visual speech recognition, the
visual description of the lip motion is fused with the speech signal to predict
spoken words. The information coming from different modalities may have
varying predictive power and noise topology, with possibly missing data in at
least one of the modalities.

Galvanic Skin Response (GSR) refers to galvanic skin response which is a measure
of the conductivity of human skin, and can provide an indication of changes in
the human sympathetic nervous system during the cognitive task time.

Gaussian mixture models (GMMs) are probability density functions comprising
a weighted sum of individual Gaussian components, each with their own
mean and covariance. They are commonly employed to compactly characterize
arbitrary distributions (e.g. of features) that are not well-fitted by a single
Gaussian.

Germane load refers to the level of a person’s effort and activity compatible with
mastering new domain content during learning. It pertains to the cognitive
resources dedicated to constructing new schema in long-term memory.

Gross errors refer to non-Gaussian noise of large magnitude. Gross errors are often
in abundance in audio-visual data due to incorrect localisation and tracking,
presence of partial occlusions, enviromental noise etc.

Hand-crafted features refer to features developed to extract a specific type of
information, usually as part of a hypothesis-driven research study. By contrast,
data-driven features are those extracted automatically from raw signal data by
algorithms (e.g., neural networks), whose physical interpretation often cannot
easily be described.

Incongruent expressions of affects. A multimodal combination is said to involve
incongruent expressions of affects if the combined modalities are conveying
different affects in terms of the category or the dimension (e.g., the facial
expressions express joy, while hand gestures express anger). Such combinations
are also called blends of emotions. They might occur even in a single modality
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such as the facial expressions (e.g., the upper part of the face may express a
certain emotion, while the bottom part of the face conveys a different emotion).

Researchers exploring the perception of human (or computer-generated)
multimodal expressions of affects usually consider the following attributes
related to perception and affects that are impacted by or do impact multimodal
perception:

Recognition rate

Reaction time

Affect categories

Affect dimensions

Multimodal integration patterns

Inter-individual differences and personality

Timing: synchrony vs. sequential presentation of the signals in different
modalities

Modality dominance

Context: environment and task related information (e.g., food or
violent scenes, and associated applications for specific users with food
disorders or PTSD)

Task difficulty

In intermediate combination, each modality is first processed to get a more abstract
representation and then all such representations from different modalities are
fed together to a single model. This processing can be in the form of a kernel
function, which is a measure of similarity, and such an approach is called
multiple kernel learning. Or the intermediate processing may be done by one or
more layers of a neural network, and such an approach corresponds to a deep
neural network.

The level of combination depends on the level we expect to see a dependency
between the inputs in different modalities. Early combination assumes a
dependency at the lowest level of input features; intermediate combination
assumes a dependency at a more abstract or semantic level that is extracted after
some processing of the raw input; late combination assumes no dependency in
the input but only at the level of decisions.

Intrinsic load is the inherent difficulty level and related working memory load
associated with the material being processed during a user’s primary task.
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Learning analytics involves the collection, analysis, and reporting of data about
learners, including their activities and contexts of learning, in order to under-
stand and provide better support for effective learning. First-generation learning
analytics focused exclusively on computer-mediated learning using keyboard-
and-mouse computer interfaces. This limited analyses to click-stream activity
patterns and linguistic content. Early learning analytic techniques mainly have
been applied to managing educational systems (e.g., attendance tracking, track-
ing work completion), advising students based on their individual profiles (e.g.,
courses taken, grades received, time spent in learning activities), and improving
educational technologies. Learning analytics data typically are summarized on
dashboards for educators, such as teachers or administrators.

Leave-one-out cross validation. Cross validation is the process of dividing a dataset
into batches where one batch is reserved for testing and all the other batches
are used for training a system. Leave-one-out means each batch is formed of a
single instance.

The user (long-term) traits include biological trait primitives (e.g., age, gender,
height, weight), cultural trait primitives in the sense of group/ethnicity mem-
bership (e.g,. culture, race, social class, or linguistic concepts such as dialect
or first language), personality traits (e.g., the “OCEAN big five” dimensions
openness, conscientiousness, extraversion, agreeableness, and neuroticism or
likability), and traits that constitute subject idiosyncrasy, i.e., ID.

A longer-term state can subsume (partly self-induced) non-permanent, yet longer-
term states (e.g., sleepiness, intoxication, mood such as depression (see also
Chapter 12 the health state such as having a flu), structural (behavioral,
interactional, social) signals (e.g., role in dyads and groups, friendship and
identity, positive/negative attitude, intimacy, interest, politeness), and (non-
verbal) social signals (see Chapters 7 and 8 and discrepant signals (e.g.,
deception (see also Chapter 13) irony, sarcasm, sincerity).

Longitudinal data refers to multiple recordings of the same type from the same
individual at different points in time, between which it is likely that the
individual’s state (e.g., depression score) has changed.

L() is the loss function that measures how far the prediction g(xt |θ) is from the
desired value rt . The complexity of this optimization problem depends on the
particular g() and L(). Different learning algorithms in the machine learning
literature differ either in the model they use, the loss function they employ, or
the how the optimization problem is solved.
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This step above optimizes the parameters given a model. Each model has an
inductive bias that is, it comes with a set of assumptions about the data and the
model is accurate if its assumptions match the characteristics of the data. This
implies that we also need a process of model selection where we optimize the
model structure. This model structure depends on dimensions such as (i) the
learning algorithm, (ii) the hyper-parameters of the model (that define model
complexity), and (iii) the input features and representation, or modality. Each
model corresponds to one particular combination of these dimensions.

In machine learning, the learner is a model that takes an input x and learns to give
out the correct output y. In pattern recognition, typically we have a classification
task where y is a class code; for example in face recognition, x is the face image
and y is the index of the person whose face it is we are classifying.

In building a learner, we start from a data set X = {xt , rt}, t = 1, . . . , N that
contains training pairs of instances xt and the desired output values rt (e.g.,
class labels) for them. We assume that there is a dependency between x and
r but that it is unknown—If it were known, there would be no need to do any
learning and we would just write down the code for the mapping.

Typically, xt is not enough to uniquely identify rt ; we call xt the observables
and there may also be unobservables that affect rt and we model their effect
as noise. This implies that each training pair gives us only a limited amount of
information. Another related problem is that in most applications, x has a very
high dimensionality and our training set samples this high dimensional space
very sparsely.

Our prediction is given by our predictor g(xt |θ) where g() is the model and θ

is its set of parameters. Learning corresponds to finding that best θ∗ that makes
our predictions as close as possible to the desired values on the training set:

θ∗ = arg min
θ

N∑
t=1

L(rt , g(xt |θ))

Mel frequency cepstral coefficients (MFCCs) are features that compactly represent
the short-term speech spectrum, including formant information, and are widely
used to characterize both spoken content (for automatic speech recognition)
and speaker-specific qualities (for automatic speaker verification). Briefly, a
mel-scale frequency-domain filterbank is applied to the spectrum to obtain mel
filterbank energies, the log of which is transformed to a lower-dimensional
representation using the discrete cosine transform.



Volume 2 Glossary 527

Metacognitive awareness involves higher-level self-regulatory behaviors that guide
the learning process, such as an individual’s awareness of what type of problem
they are working on and how to approach solving it, the ability to diagnose error
states, or understanding what tools are best suited for a particular task.

Moment of insight refers to one of several phases during the process of problem
solving. It involves the interval of time immediately before and after a person
consciously realizes the solution to a problem they’ve been working on. This
idea represents what the person believes is the solution, although it may or may
not be correct.

Multi-level multimodal learning analytics refers to the different levels of analysis
enabled by multimodal data collection. For example, speech and handwriting
can be analyzed at the signal, activity pattern, representational, or metacognitive
levels. During research on learning, it frequently is valuable to analyze data
across behavioral and physiological/neural levels for a deeper understanding of
any learning effects. In this regard, multi-level multimodal learning analytics
can support a more comprehensive systems-level view of the complex process
of learning.

A multimodal corpus targets the recording and annotation of multiple communica-
tion modalities including speech, hand gesture, facial expression, body posture,
etc. Today, most corpora that are multimodal consist of audio-visual data. Other
modalities such as 3D body and gaze tracking, or physiological signals are hardly
present, but are needed to provide a broader picture of human interaction. The
collection of large databases rich of social behavior expressed through a variety
of modalities is key to model the complexity of social interaction [Vinciarelli
et al. 2012, Eerekoviae 2014].

Multimodal fusion is the process of combining information from multiple modali-
ties, such as audio and video, into a homogenous and consistent representation.
Combining affective and social cues across channels is important to resolve sit-
uations where social behavior is expressed in a complementary [Zeng et al.
2009] or even contradictory way [Douglas-Cowie et al. 2005]. This also involves
a proper modeling of the complex temporal relationships that exist between
the diverse channels. It can help to achieve higher precision such as in cogni-
tive load measurement, or better reliability via overcoming the limitations of
individual signal or interaction modalities. The fusion can be done at different
stages: mid-fusion and late-fusion. Mid-fusion refers to the fusion of features
extracted from multimodalities before classifications, while late-fusion is the
fusion of classification scores from single modality decisions.
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Multimodal learning analytics is an emerging area that analyzes students’ natural
communication patterns (e.g., speech, writing, gaze, non-verbal behavior),
activity patterns (e.g., number of hours spent studying), and physiological and
neural patterns (e.g., EEG, fNIRS) in order to predict learning-oriented behaviors
during educational activities. These rich data can be analyzed at multiple
levels, for example at the signal level (e.g., speech amplitude), activity level
(e.g., frequency of speaking), representational level (e.g., linguistic content),
and others. These second-generation learning analytic techniques are capable
of predicting mental states during the process of learning, in some cases
automatically and in real time.

Multimodal or multiview signals are sets of heterogeneous data, captured by
different sensors, such as various types of cameras, microphones, and tactile
sensors and in different contexts.

Online recognition means that a system is able to detect and analyze affective
and social cues on-the-fly from the raw sensor input. Decisions based on the
perceived user state need to be made fast enough to allow for a fluent interaction
and it is not possible to look ahead in time. Setting up an online system is more
complex than processing data offline.

Overfitting is a problem that occurs when the training or estimation of a machine
learning method is performed on data with too few training examples relative
to the number of parameters to be estimated. The resulting problem is that the
method becomes too closely tuned to the training data, and generalizes poorly
to unseen test data.

Physiological sensor. A device that uses a transducer and a biological element
to collect physiological responses, such as heart rate and skin conductance,
and convert them into an electrical signal. The measures obtained with such
devices provide quantitative feedback about physiological changes or processes
experienced by research subjects.

Prerequisites for learning are precursors for successful learning to occur, which
can provide early markers. They include attention to the learning materials,
emotional and motivational predisposition to learn, and active engagement
with the learning activitites.

A pseudo-multimodal approach exploits a modality not only by itself, but in
addition to estimate another modality’s behavior to replace it. An example is
estimating the heart rate from speech parameters and using it alongside (other)
speech parameters.
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A Recurrent Neural Network (RNN) is a neural network that contains one or more
recurrent layers. A recurrent layer is a layer that takes a sequence x indexed by t

and processes it element by a element, while maintaining a hidden state for each
unit in the layer: ht = RNN(ht−1, xt), where ht is the hidden state at step t , and
RNN is a transition function to compute the next hidden state, that depends
on the type of hidden layer.

Redundancy: tendency of multiple signals or communication channels to carry the
same or widely overlapping information.

Representation A first fundamental challenge is learning how to represent and
summarize multimodal data in a way that exploits the complementarity and
redundancy of multiple modalities. The heterogeneity of multimodal data
makes it challenging to construct such representations. For example, language is
often symbolic while audio and visual modalities will be represented as signals.

A sequence-to-sequence model is a neural network that processes a sequence as
its input and produces another sequence as its output. Example of such models
include neural machine translation and end-to-end speech recognition models.

Shared hidden layer is a layer within a neural network which is shared within
the topology. For example, different modalities, or different output classes, or
even different databases could be trained within parts of the network mostly.
In the shared hidden layer, however, they would share neurons by according
connections. This can be an important approach to model diverse information
types largely independently but provide mutual information exchange at some
point in the topology of a neural network.

A short-term state includes the mode (e.g., speaking style and voice quality),
emotions, and affects (e.g., confidence, stress, frustration, pain, uncertainty,
see also Chapters 6 and 8.

Skilled performance involves the acquisition of skilled action patterns, for example
when learning to become an expert athlete or musician. Skilled performance also
can involve the acquisition of communication skills, as in developing expertise
in writing compositions or giving oral presentations. The role of deliberate
practice has been emphasized in acquiring skilled performance.

Social Signals: constellations of nonverbal behavioural cues aimed at conveying
socially relevant information such as attitudes, personality, intentions, etc.

Social Signal Processing: computing domain aimed at modeling, analysis and
synthesis of social signals in human-human and human-machine interactions.
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A softmax layer is a dense layer followed by the softmax nonlinearity. The softmax
nonlinearity takes a one-dimensional vector v of real numbers and normalizes
it into a probability distribution, by applying softmax(v)j = e

vj∑
i
evi

, where the

sum is over all coordinates of the vector v.

Spatio-temporal features are those which have both a spatial and a time dimension.
For example, the intensity of pixels in a video vary both in terms of their position
within a given frame (spatial dimension) and in terms of the frame number for
a given pixel coordinate (temporal dimension).

Support vector machine (SVM) is a widely used discriminative classification
method, which defines a separating hyperplane between two classes of features,
which is defined in terms of particular feature instances that are close to the
class boundaries, called support vectors.

Support vector regression (SVR) is a commonly used method for multivariate
regression, which concentrates on fitting a model by considering only training
features that are not very close to the model prediction.

Temporal dynamics of facial expression: rather than being like a single snapshot,
facial appearance changes as a function of time. Two main factors affecting
temporal dynamics of facial expression is the speed with which they unfold and
the changes of their intensity over time.

Transfer learning helps to reuse knowledge gained in one task in another task in
machine learning. It can be executed on different levels, such as the feature or
model level. For example, a neural network can be trained on a related task to
the task of interest at first. Then, the actual task of interest is trained “on top" of
this pre-training of the network. Likewise, rather than starting to train the target
task of interest based on a random initialization of a network, related data could
be used to provide a better starting point.

Transfer of learning refers to students’ ability to recognize parallells and make
use of learned information in new contexts, for example to apply learned
information outside of the classroom, in contexts not resembling the original
framing of the problem, with different people present, and so forth. This
requires generalizing the learned information beyond its original concrete
context.

Translation A second challenge addresses how to translate (map) data from one
modality to another. Not only is the data heterogeneous, but the relationship
between modalities is often open-ended or subjective. For example, there exist
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a number of correct ways to describe an image and one perfect translation may
not exist.

T-unit analysis. The analysis of terminable units of language (T-unit), which is the
smallest group of words that could be considered as a grammatical sentence,
regardless of how is punctuated. T-unit analysis is used extensively to measure
the overall complexity of both speech and writing samples and consists mainly
on measuring different aspects of their syntactic construction in text such as
mean length of the t-units, and number of clauses present in each unit, among
others.

User-independent model A model that generalizes to a different set of users beyond
those used to develop the model.

Voice quality refers to the type of phonation during voiced speech. Depending
on the physical movement of the vocal folds during phonation, the perceived
quality of speech can change, even for the same speech sound uttered at the
same pitch. Descriptors such as “creaky” and “breathy” are applied to specific
modes of vocal fold vibration.

Vowel space area is a term given to the two dimensional area enclosed by lines
connecting pairs of vowels in the formant (F1/F2) space.

Zero-shot learning is a method in machine learning to learn a new task without
any training examples for this task. An example could be recognizing a new type
of object without any visual example but based on a semantic description such
as specific features that describe the object.
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