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Abstract—Physiological signals provide a reliable method to
identify the physical and mental state of a person at any given
point in time. Accordingly, there is a myriad of techniques
used to extract physiological signals from the human body.
However, these techniques often require direct contact with
the body. This demands the cooperation of the individual as
well as the human effort required to connect devices and collect
measurements.

In this paper, we propose reliable, non-contact based meth-
ods for extracting respiration rate and heart rate from thermal
images using a large dataset of human thermal recordings.
These methods leverage a combination of image and signal pro-
cessing techniques in order to extract and filter physiological
signals from the thermal domain. Our results evidently show
that features extracted from thermal images highly correlate
with the ground truth measurements as well as indicate the
feasibility of developing non-contact based methods to extract
physiological signals.

Keywords-thermal; physiological; heart rate; respiration
rate;

I. INTRODUCTION

There is a burgeoning research focus in developing auto-

mated systems capable of monitoring human physiological

responses to provide a real-time assessment of a person’s

general health and well-being. Such measurements include

heart rate, temperature and respiration rate. In addition, the

fact that the human body exhibits unique physiological char-

acteristics in response to external stimuli, offers the potential

to detect and predict a person’s behavior or psychological

state, such as emotion, mood, stress level, distraction, and

deceit. Hence, different studies are exploring the feasibility

of incorporating physiological monitoring into a wide array

of applications.

However, there are limitations to the traditional methods

and devices used to collect physiological measurements,

such as the need to connect the devices and attach sensors

to the human body. Physically attaching these sensors can

be time consuming, uncomfortable, and impractical for

certain applications. Devices, such as ECG sensors require

electrodes to be attached to specific areas of the body. These

devices can cause discomfort and may require the presence

of trained personnel to set up the device. Other sensors may

introduce noise if the leads do not have solid contact with the

patient’s skin. Even worse, some sensors may fail to provide

reliable measurements outside of a controlled environment.

[1] designed a network for monitoring patients’ vital signs

during health emergencies. The authors noted that exposure

to cold temperatures restricts blood flow to the fingers

which can disrupt pulse oximeter readings collected from

a sensor placed on the finger. For that reason, several newer

approaches attempt to altogether avoid the use of wearable

sensors for data collection. In particular, thermal image

processing has been recently proposed as an alternative

method for acquiring physiological data.

Works in the literature suggest that health monitoring

may be more effective at diagnosing disorders which do

not manifest external symptoms. Heart rate, for example,

is a useful measure for diagnosing cardiovascular disease

(CVD), which is a leading cause of death worldwide. Specif-

ically, there is evidence linking resting heart rate to CVD

risk factors, such as hypertension, obesity, family history and

work stress [2]. Additional evidence suggests that elevated

heart and respiration rates observed alongside each other

immediately after trauma are acute predictors of delayed post

traumatic stress disorder [3]. Therefore, examining multiple

vital signs may be more effective for diagnosing specific

ailments.

Thermal imaging utilizes a principle called thermoreg-

ulation to detect natural thermal radiation emitted by the

skin, which can be interpreted in terms of physiological

changes [4]. The skin receives signals from control cen-

ters in the brain to maintain the body’s core temperature

[5]. Therefore, physiological thermoregulation in humans

comprises changes in heat dissipation (sweating) and heat

generation (shivering) in response to various internal and

external thermal stimuli [6]. Research exploring the poten-

tial of extracting physiological measurement from thermal

images has been very limited due to the cost associated

with thermal camera sensors. However, the cost has been

decreasing significantly recently with improvements in the

thermal sensors technology.

This paper explores various methods to extract multiple

physiological measurements, which could prove useful for a

variety of multimodal applications, using a dataset collected

from more than 100 subjects using a state-of-the-art thermal
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camera. Moreover, our methodology explores the benefits of

using wavelet transforms to filter physiological signals. This

departs from many previous works in the literature, which

largely relied on traditional signal processing methods, such

as Fourier transforms and/or band-pass filtering, which are

less effective at localizing features of non-stationary sig-

nals. Finally, we calculated cross correlation to measure

the similarity between the sensor and thermal signal wave-

forms. This provides a much higher level of granularity for

the purpose of evaluation as opposed to simply comparing

frequencies, which was a common practice used in previous

work.

II. RESPIRATION RATE

Methods have been proposed to extract respiration rate

from thermal videos using different combinations of image

processing and facial tracking techniques. Figure 1 depicts

the procedure we followed for extracting physiological fea-

tures from thermal videos. This begins with image correction

and enhancement in order to make certain features more

distinguishable. Secondly, a facial detection algorithm is

employed to segment the face from the background image.

Once the face has been isolated, regions of interest (ROI)

are defined in order to focus on particular areas of the face

that are known to display the desired thermal characteristics.

Finally, a variety of image processing techniques are applied

to the ROI in an attempt to find a correlation between

the temporal features within the thermal and physiological

domains.

[7] presented a variety of pre-processing methods includ-

ing image enhancement, noise removal, edge-detection, and

facial recognition, all of which were used to identify the

subject’s nostrils as the ROI. They extracted the respiration

signal by first calculating the mean intensity within each ROI

for every frame. This was followed by low pass filtering to

remove noise from the signal.

Figure 1. Image Processing Procedure

III. HEART RATE

Several studies have proposed methods to extract heart

rate from thermal images by tracking superficial blood

vessels within the face. Blood flow regulates skin tem-

perature due to heat exchange between vessels and the

surrounding tissue. These changes in skin temperature are

most prominent along superficial blood vessels. Extracting

the blood vessels from the face is often challenging due

to the low contrast between the edges of blood vessels

and surrounding tissue. This is a result of heat diffusion,

which creates a smooth gradient temperature between hot

and cold areas. Fortunately, there is a mean to overcome

this challenge by segmenting blood vessels from the face

to create what is known as a vascular map. One of these

methods is called top hat segmentation. There are two forms

of top hat segmentation: white top segmentation enhances

bright objects and black top hat segmentation enhances dark

objects. White top segmentation is effective for enhancing

the ridge-like structures of the blood vessels, which are

represented by hot or bright areas in the image [8].

Despite the effects of heat diffusion, edge detection meth-

ods can still prove to be effective. We applied several well

known edge detection algorithms including Canny, Prewitt,

Roberts and Sobel. In our experiments Canny’s method

proved to be the most effective. Figure 2 demonstrates the

result of applying the Canny edge detection algorithm to

a gray-scale thermal image from our dataset. The edges

detected in the image clearly resemble a vascular structure

in the forehead region of interest. However, edge detection

alone, may fail to capture the center of the vein where

the effect of heat transfer due to blood perfusion is most

pronounced. For that reason, we expanded the edges by a

factor of one pixel in every direction to ensure that we extract

the heat radiating from the center of each vein near the

surface of the skin. Figure 3 shows the result after applying

this technique.

Figure 2. Vascular map extraction using Canny edge detection

Figure 3. Canny edge detection after expansion

The thermal signal detected along a blood vessel presents

a composite signal that includes extraneous physiological

and environmental signals in addition to the pulse [9].

Therefore, the thermal signal must be filtered to extract

the signal(s) of interest. [10] proposed to extract the pulse

by applying a Fast Fourier Transform (FFT) to several

points along the blood vessel in order to isolate the thermal

propagation component.
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In [11], the authors introduced several improvements

based on previous work [8], [12], [13], [14], [10], [15].

First, they incorporated a blood-perfusion model to more

accurately create vascular maps, segment the forehead, and

enhance the raw thermal data. Second, once they identified

suitable blood vessels on the face, they applied filtering. In

the final step they were able to automate the entire process

by presenting a systematic approach to select appropriate

vessel segments from the vascular map.

IV. DATASET DESCRIPTION

We used our own dataset consisting of thermal recordings

collected from 104 participants with a gender distribution

of 53 females and 51 males and had different ethnic

backgrounds. Seven sessions were recorded per subject.

Two of these sessions were used as baseline measurements,

in which the subjects were instructed to silently sit still.

The remaining five sessions feature the subjects engaging

in conversation. Each session consists of a thermal video

recording of the subject’s face in addition to several contact-

based sensor readings. Therefore, a total of 728 thermal

videos with accompanying sensor readings were collected.

V. EXPERIMENTAL SETUP

The camera used to record the videos was a state-of-

the-art FLIR SC6700 thermal camera with a resolution of

640x512 and 7.2 M electrons capacity, reaching a frame rate

of approximately 100 frames/second. Physiological data was

collected using Thought Technology’s FlexComp Infiniti

sensors. The two bio-sensors were used as to provide the

ground truth; a blood volume pulse sensor and an abdom-

inal respiration band. The first sensor was attached to the

fingers of the subject’s non-dominant hand. The abdominal

respiration band was placed around the thoracic region.

Our experimental station consists of the recording device,

the physiological sensors, two desktop computers, and a

chair placed at a fixed distance from the camera. The

experimental setup and procedure were explained to the

subjects and they were asked to avoid excessive movements

to keep them in the field of view of the camera.

VI. METHODOLOGY

We perform a series of steps to extract physiological

features from the thermal domain. First, we define and track

multiple regions of interest throughout the video to com-

pensate for any displacement caused by subject movement.

Secondly, we construct a raw thermal signal by sampling the

temperature within the region of interest defined for each

frame. Finally, we filter the raw thermal signals in order to

extract the respiration rate and heart rate signals.

A. Region of Interest Identification & Tracking

We begin by defining regions on the face which are

known to display significant temperature variations based on

related work in the literature. These regions are generally the

maxillary region (surrounding the nose), periorbital region

(surrounding the eyes) and supraorbital region (forehead).

We manually created bounding boxes to define each region

within the first frame of every video.

Features to Track within each ROI were identified using

the Shi-Tomasi corner detection algorithm. These points

are located by calculating image derivatives based on pixel

intensity values. If the change in intensity is greater than a

certain threshold in both the x and y directions then the point

is labeled as a corner. These features were then passed to the

point tracker object, which uses the Kanade-Lucas-Tomasi

(KLT) feature-tracking algorithm to stabilize the region for

the duration of the video.

After detecting the tracked interesting points, we applied

a geometric transformation method, which estimates the

location of these points from one frame to the next using a

variant of the Random Sample Consensus (RANSAC) algo-

rithm. Considering a frame-rate of 100fps, we did not expect

any rapid motion between successive frames. Therefore, we

assumed the distance between a point and its projection in

the next frame to be minimal. For that reason, we limited this

distance to five pixels. Secondly, if the number of mapped

points between two successive frames is less than 95% we

skip the current frame and resume tracking in the next frame.

This is a precaution to account for potential occlusion.

B. Thermal Signal Construction

The previous tracking output data defines the size and

location of a bounding box within each frame for every

video. Each bounding box was masked against the raw ther-

mal data in the corresponding frame to extract temperature

values within the region of interest.

A thermal signal was then constructed by averaging these

values for every frame in the video. The resulting signal

has a sampling frequency of 100Hz. A series of signal

processing methods were then used to filter the thermal

signal and isolate the physiological signal of interest.

C. Respiration Rate

We developed a method for extracting respiration rates

from the maxillary (nose) region of a thermal image.

We tested our method using our dataset, which includes

recordings of subjects while they are speaking as well as

sitting silently. Thus, we were able to observe the influence

that speaking has on nasal breathing and how it affects

thermal image based respiration rate estimation, which is

a direction that, to our knowledge, was not explored before.

We also calculated the correlation between breathing signals

extracted from the thermal images and those measured by

the abdominal chest strap sensor. The raw thermal signal was
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constructed by calculating the average pixel value within the

maxillary of interest for each frame of the video.

1) Differencing: We calculate the differences between ad-

jacent elements of the signal S(t) to produce the transformed

signal ˆS(t)
ˆS(t) = S(t)− S(t− 1) (1)

2) Normalization: We normalized the signal amplitude as

follows. μ and σ are the mean and standard deviation of St
respectively. The transformed signal ˆS(t) has mean μ = 0
and standard deviation σ = 1.

ˆS(t) =
S(t)− μ

σ
(2)

3) Averaging: We down-sampled the signal to 25Hz by

calculating the average across every k = ν/25 samples.

ˆS(t′) =
∑t+k
i=t S(t)

k
(3)

4) Continuous Wavelet Transform: Mexican Hat a.k.a.

Ricker Wavelet was used as the mother wavelet ψ(t).
Equation 4 describes the Ricker Wavelet in which, σ is

the standard deviation and t represents time. Equation 5

describes the continuous wavelet transform in which S is

the input signal function, t is time, a is the scale value and

b is the translation value.

ψ(t) =
2√

3σπ1/4

(
1−

(
t

σ

)2
)
e−

t2

2σ2 (4)

Sw(a, b) =
1√|a|
∫ ∞

−∞
S(t)ψ

(
t− b
a

)
dt (5)

5) Breathing Waveform: Equation 6 was used to select

the scale which best represents the breathing component

in which, WT is the wavelet transform function, i is the

scale index and t is time. This scale is defined as smax
which corresponds to a local maximum of the energy wavelet

coefficients WTs(t) [16]. Lower scales are likely to contain

noise, while higher scales contain metabolic contributions.

smax = argmax

{∑
|WTi(t)|2

}
(6)

Applying the smax formula to the ground truth signal

consistently indicated a scale corresponding to an appropri-

ate waveform. However, applying the smax formula to the

thermal signal would sometimes indicate a scale correspond-

ing to an under-filtered or over-filtered signal. We attribute

this to the fact that the thermal signal contains noise and

metabolic contributions in addition to breathing. In contrast,

we consider the ground truth signal collected from the bio-

sensors to be an accurate representation of the breathing

waveform. In order to address this, we randomly sampled

25% of the thermal data, applied the continuous wavelet

transform, performed the smax calculation, and plotted the

resulting scale values.

6) Rate Calculation: Finally we calculate the respiration

rate based on the resulting waveform. We begin by counting

the number of peaks in the wave. However, some waveforms

contain several smaller peaks, which are not consistent with

the breathing function. To address this issue we define a

constraint known as MinPeakProminence when selecting the

peaks. MinPeakProminence measures the height of a peak

relative to other nearby surrounding peaks. This option is

particularly useful for our dataset since the signal level varies

across subjects as well as between the sensor and thermal

signals. We set this parameter to the standard deviation of the

signal in order to filter out noise relative to the signal level.

Figure 4 depicts an example of employing the approach on

the filtered thermal respiration rate signal.
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Thermal Respiration Rate Signal (Subject 05 Norm2)

Figure 4. Example of Identifying Peaks in the Thermal Signal

7) Cross Correlation: Cross correlation was used to find

the maximum correlation between shifted copies of the

sensor and thermal signals. We then calculate the Pearson

correlation coefficient of the shifted signals. Table I provides

a general guide for interpreting the correlation coefficient in

the context of medical applications [17]. In this study we

consider a correlation above 0.5 to be statistically significant.

Size of Correlation Interpretation
0.9 to 1.0 Very high correlation
0.7 to 0.9 High correlation
0.5 to 0.7 Moderate correlation
0.3 to 0.5 Low correlation
0.0 to 0.3 Negligable correlation

Table I
RULE OF THUMB FOR INTERPRETING THE STRENGTH OF A

CORRELATION COEFFICIENT [18]

D. Experimental Trials

We tested several different methods and settings on a

sample of our dataset before deciding to apply the solution

outlined in the previous section. Earlier in our studies we

averaged the signals to reduce the sampling rate in order to

remove noise and other extraneous frequency information.

We analyzed signals with sampling rates of 1Hz, 5Hz, 25Hz,

50Hz and 100Hz. Furthermore, we performed several trials

in which we reduced the sampling rate before and after

applying the continuous wavelet transform.
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The non-stationary nature of the breathing signal intro-

duced challenges in calculating an accurate respiration rate.

After conducting multiple trials utilizing different frequen-

cies and order of operations, we found that reducing the

frequency to 25Hz before applying the continuous wavelet

transform produces the best results without the risk of

neglecting the breathing signal.

Finally, in addition to measuring correlation, we counted

the number of peaks in the signal and scaled that number by

the duration of the signal to calculate the respiration rate. In

doing so, we also experimentally determined that we only

wish to include peaks with an amplitude greater than one

standard deviation from the mean of the signal.

E. Heart Rate

We developed our own method for estimating the resting

heart rates of subjects using thermal data collected from the

inner corner of the eyes. The blood volume pulse measured

from the index finger was used as the ground truth. Blood

volume pulse is also known as photoplethysmography in the

literature. This type of sensor measures the amount of blood

present in the skin by emitting an infra-red light against the

surface of the skin. Blood reflects red light but absorbs other

colors. It is therefore possible to acquire the blood volume

pulse by observing the amount of light that is reflected over

time.

1) Segmentation: The Periorbital region was used as the

region of interest. This is a departure from previous works,

which often use other regions of either the face or neck

to extract heart rate measurements. Image binarization was

used to segment areas within the ROI, which exhibit thermal

characteristics related to blood flow. For each video we

define a threshold based on the 25% hottest pixels in the

image. This threshold is required to ignore temperature

fluctuations which result from the effects of heat diffusion

explained in section III. Figure 5 shows an example in which

white pixels within the bounding box are used to construct

the thermal signal. Black pixels indicate temperature values

below the threshold, which are ignored.

Figure 5. Image Binarization Applied to the Periorbital Region

2) Averaging: We down-sampled the signal to 100Hz by

calculating the average across every k = ν/100 samples.

ˆS(t′) =
∑t+k
i=t S(t)

k
(7)

3) Sensor Signal Maximal Overlap Discrete Wavelet
Transform: We applied a discrete wavelet transform to the

sensor signal as a precaution to remove noise due to sensor

error. This step may not be required if the sensor is securely

attached to the finger under normal conditions. Daubechies

10 (db10) wavelet was used as the mother wavelet. We

selected the DB10 wavelet because in most cases it closely

resembled the characteristics of the raw BVP signals. Figure

6 provides a visual representation of the DB10 wavelet with

corresponding scaling function.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

-1

-0.5

0

0.5

1

Daubechies 10 Wavelet

Scaling Function
Wavelet Function

Figure 6. DB10 Wavelet & Scaling Functions

4) Thermal Signal Continuous Wavelet Transform: Morse

Wavelet was used as the mother wavelet ψ(t), where U(ω) is

the unit step, αβ,γ is a normalizing constant, γ characterizes

the symmetry of the Morse wavelet and β is the decay

parameter.

ψβ,γ(ω) = U(ω)αβ,γω
βeω

γ

(8)

5) Wavelet Scale Selection: We experimentally found that

discrete wavelet scale 32 provided the best set of coefficients

to use for calculating an accurate heart rate from the sensor

signal. For the thermal signal we select scales which cor-

respond to frequencies in the range of 1-1.67 Hz, which

approximately corresponds to 60-100 beats per minute.

We then reconstruct the signal from this frequency band

using the inverse continuous wavelet transform function. In

equation 9, 〈〉 denotes the inner product and Re{ } denotes

the real part of the function.

f(t) = 2Re

{
1

Cψ,δ

∫ ∞

0

< f(t), ψa,b(t) >
da

a

}
(9)

6) Rate Calculation: We count the number of peaks in the

wave then scale that value by the length of the recording to

calculate the heart rate in units of beats per minute. This

calculation is identical to the rate calculation outlined in

section VI-C.

VII. RESULTS

A. Respiration Rate

We use the ground truth measurement as a baseline to

evaluate the respiration rate which we extract from the

thermal domain. Consequently, an accurate baseline mea-

surement is critical for assessing the accuracy of our results.

The data set was divided into two sets, which we will refer to
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Figure 7. Subject 25 Raw Sensor Signal
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Figure 8. Subject 25 Raw Thermal Signal

as ‘Norm’ and ‘Talking’. In the Norm videos, subjects are

silently sitting still without being exposed to any stimuli.

In this case, the subjects are likely breathing through their

noses. However, in the Talking videos, the subjects are

speaking most of the time. Speaking disrupts nasal breathing

in order to blow air against the vocal chords. This will affect

the thermal respiration rate we extract from the maxillary

region of interest. Figures 7, 8, and 9 display examples of

the sensor and thermal respiration rate signals during various

stages of processing. These figures display the respiration

signal extracted from a subject breathing normally without

speaking.

Category
Respiration (bpm) Norm Talking
<12 8 113
>24 43 34
[12 24] 158 372
Total 209 519

Table II
VIDEO CATEGORICAL BREAKDOWN

Table III displays the average correlation rates before and

after removing outliers. Removing outliers resulted in a three

percent increase for both sets of videos.

Category Before After
Norm 0.58 0.61
Talking 0.40 0.43

Table III
AVERAGE CORRELATION RATES BEFORE & AFTER REMOVING

OUTLIERS

The literature reports a valid respiration rate to be between

12 and 24 breaths per minute (bpm). We assume the respira-

tion rates of all subjects to fall within this range since most
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Shifted Sensor & Thermal Signals After Cross Correlation (Subject 25 Norm1)

Sensor
Thermal

Figure 9. Subject 25 Transformed Signals (Correlation = 0.98)

t df p
t-test 0.665 157 0.507
Upper -2.91 157 0.002
Lower 4.24 157 <.001

Table IV
RESPIRATION RATE: TWO ONE-SIDED T-TEST RESULTS

of them were relatively young and healthy college students.

We consider respiration rates outside of this range to be

outliers. Samples containing invalid ground truth respiration

rates were therefore eliminated. We analyzed the Norm set

first since we expect subjects to exhibit natural breathing pat-

terns while they are in a relaxed state. Eight videos produced

respiration rates below 12bpm, while 43 videos produced

respiration rates above 24bpm. A total of 51 videos were

eliminated from a total of 209, which accounts for 24% of

the total videos. Comparison of the ground truth and thermal

respiration rates extracted from the Talking set reveal a

higher variation and a lower correlation between the two

signals as seen in Table III. 113 videos produced respiration

rates less than 12bpm, while 34 produced respiration rates

above 24bpm. A total of 147 videos were eliminated from

a total of 519, which accounts for 28% of the total videos.

Table II shows that the majority of the eliminated videos

had respiration rates which are considered to be too low. This

supports our assumption that invalid measurements are most

likely the result of an ill fitted respiration sensor. Examples

of this could include excess clothing worn underneath the

sensor or the chest strap not fitting snug against the patient’s

chest. Either of which, could explain a lower reported

respiration rate. Furthermore, the Institutional Review Board

(IRB) for Protection of Human Subjects in Research defines

guidelines which limit the constraints we can impose on the

subjects. For that reason, subjects were left to their discretion

in deciding what clothes they wore during the study or how

tight they chose to adjust the chest strap.

Schuirmann’s Two One Sided Tests (TOST) Procedure

was used to assess equivalence between the ground truth and

thermal respiration rates [19]. We defined our hypothesis

interval to be [-1, 1] bpm. Using this interval, we were

able to conclude that the average Norm ground truth and

thermal respiration rates are equal within ±1 bpm and a

99% confidence interval. Furthermore, the Talking ground
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Low High Lower Upper
Cohen’s d -0.285 0.285
Raw -1.00 1.00 -0.471 0.842

Table V
RESPIRATION RATE: TWO ONE-SIDED T-TEST EQUIVALENCE BOUNDS
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Figure 10. Subject 67 Raw Sensor Heart Rate Signal

truth and thermal respiration rates are equal within a ±1
bpm and an 80% confidence interval.

The results of the two one sided T-test are listed in table

IV, in which t is the point that isolates probability α in

the upper tail of the Student’s t distribution with df degrees

of freedom and p is the associated p-value. The confidence

intervals are listed in table V, in which Low/High show the

user defined interval and Lower/Higher show the TOST con-

fidence interval centered around the difference of the sample

means. Cohen’s d is the standardized difference between the

means while Raw is simply the mean difference. The results

strongly suggest that a relationship exists between the sensor

and thermal domains and that this relation is not simply due

to chance. The test also reveals that the rates extracted from

the normal videos are more consistent than those extracted

from the talking videos. This supports our assertion that our

respiration rate estimation is more accurate when subjects

are breathing through their noses without speaking.

B. Heart Rate

We analyzed a total of 727 videos of 104 subjects. The

inner corners of the eyes were used as the region of interest

for extracting the thermal heart rate signal. In this section

we no longer make a distinction between the ‘Norm’ and

‘Talking’ videos as we did in section VII-A for calculating

respiration rates. The reason for this is that measurements

extracted from the eye region should not be affected by

talking in the same way the nose region was. Table VI

shows that the sensor rates are more spread out compared

to the thermal heart rates. The small standard deviation of

the thermal rates is likely a result of the narrow pass-band

we selected when computing the inverse continuous wavelet

transform.

Normal resting heart rates are generally considered to be

in the range of 60-100 beats per minute. For that reason, we

consider heart rates above 100bpm to be outliers. Removing

outliers reduced the standard deviation of the sensor rates
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from 12bpm to 10bpm as shown in table VI. This also proves

our point that contact-based sensors do not necessarily pro-

vide accurate measurements and a non-contact approach can

not only be more feasible, but more reliable as well. Figures

10, 11, and 12 display examples of the sensor and thermal

heart rate signals during various stages of processing.

Finally, we perform a two one sided T-test on the heart

rates to test the equivalency between the sensor and thermal

rates. 657 samples out of the total 727 were used after

eliminating outliers. The test results listed in Table VII

reveal that the two sets are equivalent in the interval [-

5,+5] for a 99% confidence interval. Table VIII shows that

the TOST interval is within the user defined interval [-5,5].

These results suggest that the true mean difference between

the heart rates is less than 5 beats per minute. Assuming

a normal distribution, this statistic should remain true for

larger sample sizes and/or different samples from the same

population.

VIII. CONCLUSION

We have developed a solution which integrates image and

signal processing techniques to extract various physiological

signals from thermal images. Specifically, we proposed

different methods for capturing temporal features in the face

and for filtering thermal signals by first defining and tracking

our thermal ROI, second constructing a thermal signal from

the tracked ROI, and third filtering the thermal signal to

extract physiological measurements.

Our results show a significant relation between the res-

piration rates extracted from thermal imaging and those

recorded by contact-based sensors. Mean respiration rates
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N Mean Median SD SE
Sensor 657 81.6 81.4 10.3 0.403
Thermal 657 78.2 78.3 2.61 0.102

Table VI
HEART RATE: DESCRIPTIVES

t df p
t-test 8.21 656 <.001
Upper -3.91 656 <.001
Lower 20.3 656 <.001

Table VII
HEART RATE: TWO ONE-SIDED T-TEST RESULTS

extracted from the thermal domain were within a range of

one breath per minute from the mean of the sensor-based

measurements. We were also able to establish an average

correlation of 0.61 between the thermal and sensor breathing

signals for the Norm recordings. Finally, we extracted heart

rates from the thermal domain. The mean difference between

the sensor and thermal heart rates was five beats per minute.

Hence, this research has shown that non-contact approaches

using thermal imaging represent a reliable alternative to

using contact-based sensors.
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