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ABSTRACT
Multimodal sentiment analysis aims to detect and classify senti-
ment expressed in multimodal data. Research to date has focused
on datasets with a large number of training samples, manual tran-
scriptions, and nearly-balanced sentiment labels. However, data
collection in real settings often leads to small datasets with noisy
transcriptions and imbalanced label distributions, which are there-
fore significantly more challenging than in controlled settings. In
this work, we introduceMORSE, a domain-specific dataset forMulti-
mOdal sentiment analysis in Real-life SEttings. The dataset consists
of 2,787 video clips extracted from 49 interviews with panelists
in a product usage study, with each clip annotated for positive,
negative, or neutral sentiment. The characteristics of MORSE in-
clude noisy transcriptions from raw videos, naturally imbalanced
label distribution, and scarcity of minority labels. To address the
challenging real-life settings in MORSE, we propose a novel two-
step fine-tuning method for multimodal sentiment classification
using transfer learning and the Transformer model architecture; our
method starts with a pre-trained language model and one step of
fine-tuning on the language modality, followed by the second step
of joint fine-tuning that incorporates the visual and audio modali-
ties. Experimental results show that while MORSE is challenging
for various baseline models such as SVM and Transformer, our two-
step fine-tuningmethod is able to capture the dataset characteristics
and effectively address the challenges. Our method outperforms
related work that uses both single and multiple modalities in the
same transfer learning settings.

KEYWORDS
Multimodal Sentiment Analysis; Dataset; Transfer Learning; Trans-
former; Imbalanced learning
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1 INTRODUCTION
In this paper, we focus on multimodal sentiment analysis, which is
defined as the task of identifying the sentiment orientation (usually
labeled positive, negative, or neutral) in multimodal data.

Despite the great improvement brought by existing datasets
[33, 53, 54], which are mainly collected in controlled manners, fewer
studies have been conducted on multimodal sentiment analysis
tasks in real-life settings. The difference between real-life settings
and controlled settings are (1) real-life videos usually need auto-
matic transcription due to the high cost of manual transcription
and issue of real-time response; (2) real-life tasks usually have small
data scale and imbalanced label distribution.

To benefit the study on the above issues, we introduce MORSE,
a domain-specific dataset for MultimOdal sentiment analysis in
Real-life SEttings, built up with interview videos from a consumer
research study on skin and health care products. In the videos, the
panelists are asked to talk about their usage of their everyday prod-
ucts, but they do not necessarily express their sentiment towards it
explicitly. The construction of our dataset highlights the “natural
label distribution” scenario where we do not purposely seek for
a relatively balanced number of positive or negative samples but
rather keep the underlying sentiment distribution in all utterances.
The ratio of samples annotated as negative, positive, and neutral
in our dataset is around 1:10:30; having nearly 75% of neutral la-
bels thus exemplifies a naturally imbalanced distribution. Besides,
with only 63 of 2787 video clips annotated as negative, it is also a
direct example of specific domain applications where the training
samples for certain minority labels are extremely scarce. Another
characteristic of our dataset is that it contains only real-life videos
recorded under noisy environment conditions, and the voice of the
interviewer frequently mixes with the panelist, making it more
difficult to have clean automatic transcription.

Since the task setting of MORSE is a combination of noisy text,
imbalanced labels and insufficient samples for minority classes,
a widely-considered solution can be transfer learning. There has
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Table 1: Comparison to related datasets.

Dataset Task Domain #samples #classes Transcription Distribution
MOUD [33] Sentiment General product review 412 2 Automatic Balanced
MOSI [53] Sentiment Movie review 2199 7 Manual Balanced
MOSEI [54] Sentiment/Emotion Open domain 23453 7/6 Manual Balanced
IEMOCAP [7] Emotion Scripted action 10037 10 Manual Balanced*
MELD [36] Emotion TV-series 13708 6 Manual Imbalanced
MORSE Sentiment Domain-specific consumer interview 2787 3 Automatic Imbalanced
* Although IEMOCAP has 10 emotion labels, previous work usually used the majority of 4 or 6 and discard the minorities.

been a surge of transfer learning research using the “pre-training
and domain-adaptation” paradigm with Transformer model [47],
both on natural language processing [14, 37, 50] and multimodal
processing [15, 23, 42, 44, 55]. The majority of existing multimodal
pre-training methods rely on the visual-groundings of language.
However, in sentiment analysis tasks, finding visual-groundings
is not as effective [38]. This is because most entities mentioned
in the text do not even exist in the video. Besides, for the visual
and audio modality, the key to correct sentiment prediction lays
in the sequential change of facial expressions, gestures and speech
tone, which can be automatically aligned with the textual word
sequences [35, 53, 54].

There has not been much exploration on a joint pre-training
method for this kind of tasks. On this side, we propose a novel
two-step fine-tuning method based on BERT pre-training [14]. Our
method enables the incorporation of sequential visual and audio
features to a pre-trained textual model. In the task setting of our
dataset, it outperforms basic models as well as both single-step
textual BERT and related multimodal pre-training methods for
video sentiment analysis, establishing a temporary state-of-the-art
score and a strong baseline for future research.

The contributions of our paper are 3-fold:
• We propose a domain-specific dataset for MultimOdal senti-
ment analysis in Real-life SEttings (MORSE). It’s especially
suitable for applications regarding real-life videos and im-
balanced label distribution.

• We provide rich baseline results using both non-sequential
and sequential features, illustrating the characteristics and
challenges covered by the MORSE dataset.

• We propose a novel two-step fine-tuning method that lever-
ages multimodal information in the transfer learning for
sentiment analysis 1. It outperforms both single-modal and
multimodal related work in our task settings.

2 REAL-LIFE SETTINGS
We define real-life settings as having the following two issues that
are typical for multimodal sentiment analysis tasks regarding real-
life videos, and not well-covered by existing work:

Firstly, automatic and noisy transcriptions. In most work [25, 35,
52–54], the models are built on manual transcriptions. However, for
real-life applications, the sentiment analysis models usually deal
with raw videos directly taken from recording devices. To make
use of the textual information (which is important in sentiment

1Our code and data is available at https://github.com/FlamingHorizon/MORSE.

analysis) in real-life videos, automatic transcription is commonly
applied because of the high cost of manual transcription and the re-
quirement of real-time response. This produces noise in the textual
modality and potentially hurts the model performance.

Secondly, small data scale and imbalanced label distribution. For
most existing datasets, the collection process ensures that the
speech clips necessarily contain opinions, and the number of sam-
ples under each label (namely “label distribution”) is usually suf-
ficient and balanced [33, 53, 54]. However, real-life applications
based on daily talks may not necessarily contain abundant opinion
segments because people do not express their sentiments frequently
when they do not intend to. Therefore, the “natural” label distri-
bution in some real-life tasks can be very different from existing
datasets built with only opinion segments; they are more likely to
be imbalanced with “neutral/objective” label being the majority.
Furthermore, in applications corresponding to specific domains, be-
cause of the small scale of the available data, the number of training
samples under minority labels can even be scarce and insufficient
for learning. This brings difficulty to sentiment analysis because
affection labels (positive or negative) are what people mainly care
about, however, these represent the minority classes in the over-all
distribution in real-life settings. As demonstrated in our experimen-
tal results, minority labels can easily be overwhelmed by majorities,
which affects the generalization of the models.

3 RELATEDWORK
3.1 Multimodal Sentiment Analysis
To date, the majority of existing work in multimodal sentiment anal-
ysis uses three modalities: textual, visual, and audio; the classifica-
tion task is usually formulated as assigning one of three sentiment
labels: positive, negative, or neutral, or conducting regression on
sentiment intensities. Commonly-used benchmarks for multimodal
sentiment analysis include MOUD [33], MOSI [53] and MOSEI [54].
There are also related datasets in multimodal emotion recognition
task, such as IEMOCAP [7] and MELD [36]. These datasets were
either acquired under controlled lab settings (i.e., IEMOCAP) or
using specific data collection guidelines that ensure that they have
a balanced label distribution, have reasonable audiovisual quality,
and also include high-quality manual transcriptions. This makes
them valuable to explore the properties of multimodal human be-
havior for these tasks. However, an important drawback is that
they do not represent the natural label distribution of the task and
also do not fully portray the challenges of multimodal processing.
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We address these issues while building MORSE. In particular, our
data collection and annotation process preserves the natural label
distribution present in consumer videos and portrays the challenges
of multimodal processing, including ambient noises and different
recording conditions, and the use of noisy automatic transcriptions.

Regarding baseline methods, Support Vector Machine (SVM)
[46] is often the first choice of preliminary baselines [33, 53, 54].
For Neural Network-based models using sequential features, Gated
Recurrent Units (GRU) [5] and Long Short-term Memory (LSTM)
[21] are widely considered. [18, 19] proposed models based on
Memory Network [41] and attention [5] mechanism for emotion
recognition. Other models include multimodal factorization [24, 45].
If trained on balanced labels and sufficient data, existing models
had solid performance, but limited studies have been conducted on
their behaviors on training data with naturally imbalanced labels.

3.2 Multimodal Pre-training
There has been a series of work on joint pre-training of language
and visual modalities [15, 23, 42, 44, 55] for tasks such as Visual
Question Answering [3], Video Captioning [49] and Visual Dialog
[11, 12]. The typical paradigm they use is to first encode different
sub-parts of the image or video as a visual feature sequence follow-
ing the textual word embeddings, and then pre-train a sequential
model on top of the complete sequence using methods inspired by
BERT[14]. The rationale behind this is that the Transformer self-
attention heads learned during the pre-training phase can align the
word semantics to specific sub-parts of the visual contents. For VQA
and Visual Captioning tasks, these methods are highly effective
because the visual entities are the key to questions. However, in
sentiment analysis, the main goal is not linked to visual ground-
ing but rather to connect sentiment with the sequential change of
facial/body language and speech tone.

A common approach in multimodal sentiment analysis is to time-
align words, speech, and visual content [35, 53, 54]. For instance,
[38] used textual BERT for pre-training and added shifting gates to
inject visual and audio features into the multimodal representation.
Our proposed model is closely related to this method, but conduct
two steps of fine-tuning instead of one, because an independent
fine-tuning on textual modality is critical for our real-life settings,
as we show in our experimental results. We also avoid the com-
plexity brought in by shifting gate parameters to better address the
extremely imbalanced label distribution.

3.3 Imbalanced Learning
Typical methods to deal with imbalanced labels include SMOTE
[10, 30] and RUSTBoost [40]: the core idea is either over-sampling
the minority labels or under-sampling the majority labels to build a
balanced pseudo-dataset [1]. The main issue with these methods is
that they work best with the ensemble of a relatively large number
of simple classifiers, limiting their use in combination with neural
network models that can generate better data representations.

Transfer learning is also widely considered as a solution to imbal-
anced label learning [6, 32]. Recent research has shown that domain
adaptation with pre-trained language models [14, 34] usually al-
leviates the imbalance and scarcity issue to some extent [2, 26].
This is because the knowledge obtained from the large external

Figure 1: Demonstration of multimodal sentiment analysis
task and typical video scenes of the MORSE dataset.

corpus is encoded in the model weights, so samples of minority
labels achieve meaningful representations before the fine-tuning
process starts, thus mimicking the "over-sampling" process.

4 MORSE DATASET
4.1 Data Source
The source videos ofMORSE are obtained from a consumer research
study on skin and health care products conducted by Procter &
Gamble during 2015. In these videos, panelists are interviewed about
their skincare routine and product usage. During the interview, the
panelist is asked to pick up the products they use for the daily
skin care routine one-by-one, and talk about their product usage,
including its function, frequency of use, effectiveness, and their
experiences with the product. These conversations are conducted in
a free manner and interviewers do not ask explicitly for users’ likes
or dislikes about the product, but rather focus on product usage
and habits. This makes the interview similar to daily conversations.

Figure 1 shows a similar scenario to those in our videos 2. The
dataset is derived from individual recordings from 49 female pan-
elists with ages ranging approximately from 20-40 years and located
in two cities in the US. Each interview has an average duration of 40
minutes and portrays two speakers, the panelist and the interviewer.
All participants expressed themselves in English.

4.2 Video Segmentation
As an initial step, we segment the videos to identify portions of the
conversations where panelists talked about a specific product. Since
the panelists are frequently interrupted by the interviewer to make
clarifications or change topics, we devise a set of guidelines for
video segmentation: 1) Select only the segments where the panelist
is talking about a product; 2) Start segmenting when the speaker
starts talking about the product (Not when the interviewer asks

2Due to privacy issues, we’ll release the face features only instead of the actual videos.
The pictures shown in figure 1 are from YouTube.
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Table 2: Comparison between MORSE and MOSI [53].

Statistics MOSI MORSE
Total number of segments 2199 2787
Total number of videos 93 49
Total number of distinct speakers 89 49
Average segments in video 23.2 56.9
Average segment length 4.2 sec 19.4 sec
Average word count per segment 12 48
Total of unique words in segments 3107 5547
Total number of words in segments
appearing at least 10 times in the dataset 557 834

the question); 3) Stop segmenting when the speaker is done talking
about the product, i.e., changes the topic, is interrupted by the
interviewer for more than 30 seconds or makes a long pause.

The motivation of these guidelines is to identify all the segments
where panelists potentially express sentiment towards the product
they are describing, although not exclusively, thus reflecting the
natural distribution of sentiment expressed during the conversation.

All 49 interviews are segmented independently by three annota-
tors using the ELAN annotation tool [48]. Before the segmentation
phase, annotators participated in a calibration step where they
discussed the criteria for segmenting each video, segmented two
videos independently, compared the obtained segmentation, and
discussed disagreements. To further verify that annotators were
consistently following the segmentation guidelines, we measured
the pair-wise overlap ratio for segmentation in a sample of 10 videos.
This is done by pairing two segments from different annotators that
are close to each other in timeline, and computing the Intersection
over Union (IoU) score (ranging between 0 and 1), averaged over
all pairs and all videos. The final overlap score is 0.3839, which
suggests reasonable consistency among the three annotators.

We then proceeded to independently segment the remaining
videos. Following this process, we obtained a total of 2,787 video
segments with an average duration of 19.4 seconds.

4.3 Sentiment Annotations
After segmenting the videos, we move to an annotation step to as-
sign a sentiment label that best summarizes the sentiment expressed
by the panelist while talking about the product. For each video, we
seek to assign one of three categories: positive, negative, or neutral.
The annotation is also conducted using ELAN. As before, annota-
tors started by double coding two conversations, then compared
their annotations and resolved disagreements. This phase involved
several iterations where annotators reconciled differences while
assigning the labels. Then they proceed to annotate independently.

To measure inter-annotator consistency, we use the Cohen’s
Kappa score [28]. We reach a Kappa score of 0.6495 in 10 double-
coded videos, indicating a satisfactory agreement. The final dis-
tribution of the annotated clips is 2,056 neutral, 668 positive, and
63 negatives. As observed, our dataset distribution is very skewed
towards the neutral label. The ratio of labels is 32.6:10.6:1, reflecting
the challenge of imbalanced labels in real-life data.

To further illustrate the challenges of our dataset, Table 2 shows
a comparison of general data statistics with MOSI, a dataset widely

used for multimodal sentiment analysis [53]. Note that in this table,
we only compare with the “opinion segments” ofMOSI as it contains
a neutral label. As observed, our dataset has significantly longer
video duration and word sequences, which in combination with
the noisy transcriptions and imbalanced label distribution, makes
our task much more challenging.

4.4 Transcription
To obtain the automatic transcription, we first extract the audio of
the corresponding video and split it based on the segmentation. We
obtain both the transcripts and word timestamps using the Google
Speech-to-text API 3. Manual inspection showed that the transcrip-
tion is of reasonable quality; however, there is non-negligible noise
introduced by speech recognition errors and interruptions between
speakers. The transcripts consist of approximately 133,000 words,
with each transcript ranging between 1-398 words and having an
average of 48 words. Table 3 shows sample transcript excerpts of
positive, negative, and neutral videos.

5 METHOD
We propose a novel two-step multimodal fine-tuning method based
on the Transformer [47] architecture and BERT [14] pre-training. In
this section, we first describe the textual, visual, and audio features
used by our proposed models and baselines; then we describe the
Transformer model used for the three-way sentiment classification
of MORSE, followed by our proposed fine-tuning method.

5.1 Feature Extraction
We extract both sequential features and non-sequential features for
each modality. Sequential features are used by Recurrent Neural
Network (RNN) and Transformer baselines, while non-sequential
features are single vectors used by basic models such as Support
Vector Machines (SVM), Logistic Regression and Boosting.

During the feature extraction process, we follow the common
practice of existing work [35, 38, 53, 54] of time-aligning visual and
audio features using the timestamp for each transcription word.

5.1.1 Linguistic Features. We obtain two sets of linguistic features.
The first consists of the tf-idf vector representations of the word
distribution in each transcript. The minimum document frequency
is set to five, resulting in a vocabulary of size 1387. The second is
sequential features obtained by first tokenizing the transcript with
the WordPiece tokenizer tool [51] and then adding a special token
[𝐶𝐿𝑆] at the start.

5.1.2 Visual Features. We explore two sets of facial features: action
units [17] (AUs) and face embeddings. We extract visual features
at the word level by selecting the video frame at the word me-
dian duration. We start by reshaping the frame to a resolution of
640 × 360, and process it using the Face++ API [16] to recognize
the speaker’s face. The success rate of this process is 96.8%. 4 AUs
are directly available from Face++, along with the recognized face
box, we thus use the resulting 166-dimensional vector containing
the x and y coordinates of 83 facial landmarks representing the

3https://cloud.google.com/speech-to-text
4For cases where face recognition fails, the corresponding visual features are obtained
by smoothing from its adjacent neighbors.
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Table 3: Examples of automatic transcription with positive, negative, and neutral labels.

Transcription Label
I’m trying to think of the name of it melon. Melon Ashley.
It did not work at all. And I guess I just decided I can’t give somebody that kind of money
and not get satisfaction and I sent her pictures afterwards and said

Negative

The reason I’m not too fond of this right now is
because it doesn’t have so screen looking so I actually have to give my new
one with my sunscreen as you can tell I have any seats and stubborn.

Negative

I use Advanced Night Repair Estee Lauder.
It’s a like a recovery serum. It just helps with like age spots dark spots. If I had acne.
It helps it. I can see it like healing faster and I don’t know it might be a wrinkle fighter,
but I’m not really sure it seems like it just helps.

Positive

Of the eye cream just because I don’t want wrinkles around my eyes.
So I want to prevent any damage any and all damage these have built in SPSS.
So there are also some Block in a moisturizer.

Positive

I have Lancome me blush that I use Neutral

And I spray this in my hair after I grade it and curl it just to keep Chris from developing. Natural

different AUs. We further process these features by centering them
to a (0,0) position and then standardize each feature to have zero
mean and standard deviation of 1. To obtain face embeddings, we
input the detected face box into FaceNet Inception [43], a Convo-
lutional Neural Network (CNN) pre-trained on the VGGFace2 [9]
face recognition dataset, and obtained 512-dimensional continuous
features representing the speaker’s face. We use two strategies to
aggregate visual features at the video level. First, for non-sequential
features, we take an average over the visual features (either AUs or
face embeddings) corresponding to all words and use the resulting
vector as a single representation of the visual modality. For the
sequential features, we directly use the face embeddings obtained
with FaceNet corresponding to each word in the transcript.

5.1.3 Audio Features. We use the Covarep [13] toolkit to extract
raw audio features consisting of a 257-dimensional group delay
spectrogram features obtained every 0.01 seconds. For sequential
features, we average the audio features over the duration of each
word. For non-sequential features, we average over the duration of
all words in the transcript to obtain a single vector.

5.2 Basic Transformer Model
Our proposedmethod is based on a Transformer encoder [47] neural
network that uses positional embedding to incorporate temporal
information in the input sequences. In our work, the input of the
Transformer encoder can be sequences of either word embeddings
or joint-modal embeddings. Transformer uses multiple layers of
self-attention operations to produce high-level representations at
each position. The top-level representation, which captures long-
distance connections inside the input sequence, is passed to a Multi-
Layer Perceptron (MLP) classifier to predict the sentiment labels.

5.3 Two-step Fine-tuning
We propose a novel two-step fine-tuning method for multimodal
sentiment analysis. The method uses two Transformer encoders:

the first encodes the textual modality (TransEnc1) and the second
(TransEnc2) encodes all modalities. Our pre-training scheme aims
to address two main challenges in MORSE: Firstly, the noise intro-
duced by automatic transcription, and secondly, the imbalanced
label distribution. Figure 2 presents an overview of our method.

5.3.1 Pre-training. The inbalanced distribution of our dataset high-
lights the necessity of having large external corpus to learn the
semantics of words and phrases expressing the sentiment. We
use BERT [14], an unsupervised pre-training method for Trans-
former, to pre-train the language-only encoder (TransEnc1) using
the BookCorpus and English Wikipedia datasets [14, 56]. BERT
combines two different pre-training objectives: masked language
model (MaskLM) and next sentence prediction (NSP).

5.3.2 Step 1: Language Fine-tuning. After the pre-training step,
we obtain an open-domain encoder (TransEnc1). In order to make
TransEnc1 more suitable for sentiment analysis, it must be further
trained to encode sentiment. Therefore, in our step 1 of fine-tuning,
we add an MLP classifier (namely Classifier1) to the TransEnc1
model, and fine-tune them using the Cross-Entropy loss function
and our ground-truth sentiment labels. In this step, only textual
transcripts are used as input as we seek to connect the learned lan-
guage semantics to the sentiment labels. Thus, the process makes
TransEnc1 capable of assigning distinctive representations for lan-
guage inputs with different sentiment labels.

5.3.3 Step 2: Joint Fine-tuning. As mentioned in Section 1 and
3.2,most existing joint pre-training methods on visual-language
tasks do not fit the problem setting of sentiment and emotion anal-
ysis where visual and audio features are naturally aligned with
the language. To address this, we propose step 2: joint fine-tuning
as a further step to incorporate aligned sequential features from
visual and audio modalities. In step 2, we freeze the weights of
TransEnc1, unplug it from Classifier1, and use it as a “language fea-
ture extractor”. In particular, we use the top-level representations
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FaceNet Covarep

Step 1

Step 2

Figure 2: Our proposed two-step fine-tuning method for multimodal sentiment analysis.

of TransEnc1 (before the MLP classifier) as sequential linguistic
features. We designed a fusion module to merge the three feature
sequences from different modalities into one. Let 𝐿𝑖 ,𝑉𝑖 , 𝐴𝑖 stand
for the language, visual and audio feature corresponding to word
token position 𝑖 , respectively. The fusion module computes joint
feature 𝐹𝑖 via:

𝐹𝑖 = 𝐷𝑃 (𝐿𝑁 (𝑊𝑙 ∗ 𝐿𝑖 +𝑊𝑣 ∗𝑉𝑖 +𝑊𝑎 ∗𝐴𝑖 + 𝑏)), (1)

where𝑊𝑙 ,𝑊𝑣,𝑊𝑎 are projection weights and 𝑏 is a bias vector; DP
stands for a Dropout [20] layer with dropout rate 0.1; LN stands for
Layer Normalization [4].

We learn to integrate multimodal representations using again
a transformer model (TransEnc2). The 𝐹𝑖 sequence is passed to
TransEnc2 as input embeddings. A separate MLP network, namely
Classifier2, is used in combination with TransEnc2 to predict the
sentiment labels. In step 2, the weights of Classifier2, TransEnc2,
and fusion module are randomly initialized and trained using Cross-
Entropy loss. At test time, we run a forward pass with the modules
in step 2 (Figure 2, right) and choose the output label with maximum
softmax value from Classifier2.

It’s worth noticing that we have two separate classifiers (Classi-
fier1 and Classifier2) and conduct fine-tuning with Cross-Entropy
loss in both Step 1 and Step2, which is different from related work
that performs language fine-tuning using the sameNSP andMaskLM
objectives as BERT on domain-specific data [39]. Our motivation
for choosing Cross-Entropy loss is that fine-tuning with NSP and
MaskLM objectives relies on high-quality textual ground truth
which is not our case as we use noisy transcripts obtained via
automatic speech recognition.

6 EXPERIMENTS
6.1 Experimental Setup
Since MORSE has an extremely imbalanced label distribution in
which the sentiment labels (positive and negative) are minorities,
measuring only the overall accuracy would not be informative, i.e.,
a majority baseline predicting all “neutral” can have high overall ac-
curacy but zero recall on minorities. Thus, our models are evaluated
using precision, recall, and F-score metrics for each label. There
are only 63 negative samples in MORSE. Thus, a single training-
validation-testing split would produce results with high bias. To
address this issue, we run 5-fold cross-validation and report the
average results in our experiments.

We use two types of baselines. The first includes basic machine
learning models that use non-sequential features, while the sec-
ond consists of deep neural network models that use time-aligned
sequential features.

6.2 Non-sequential Baselines
We experiment with four baseline methods that use non-sequential
features for all the three modalities i.e., tf-idf vectors for the lin-
guistic modalities, action units and face embeddings for the visual
modality, and audio features obtained as described in section 5.1.
Support Vector Machines (SVM): SVMs are strong classifiers for
small-sized datasets and at times outperform neural counterparts
[8]. We use the SVM implementation from scikit-learn [31] with its
default configurations.
Multi-layer Perceptron (MLP): The MLP feed-forward network
has two hidden layers of 256 neurons and ReLU [29] activation. We
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Table 4: Cross-validation results for basic models using non-sequential features. p, r, f stands for precision, recall and f-1 score,
respectively. All visual stands for Action units + Face embeddings

Features p-neg r-neg f-neg p-pos r-pos f-pos p-neu r-neu f-neu
SVM

Ling. + Audio + Action units 0.070 0.127 0.089 0.359 0.500 0.417 0.808 0.687 0.742
Ling. + Audio + Face embeddings 0.060 0.113 0.077 0.373 0.489 0.423 0.812 0.706 0.755
Ling. + Audio + All visual 0.080 0.190 0.112 0.397 0.539 0.457 0.825 0.695 0.754

MLP
Ling. + Audio + Action units 0 0 0 0.504 0.398 0.444 0.804 0.881 0.841
Ling. + Audio + Face embeddings 0.200 0.031 0.053 0.507 0.421 0.459 0.806 0.872 0.838
Ling. + Audio + All visual 0 0 0 0.493 0.403 0.442 0.803 0.873 0.836

SVMSMOTE+SVM
Ling. + Audio + Face Embeddings 0.200 0.053 0.083 0.524 0.550 0.537 0.840 0.846 0.843

RUSBoost+DT
Ling. + Audio + Face Embeddings 0.060 0.032 0.040 0.273 0.437 0.334 0.754 0.616 0.676

RUSBoost+Logistic
Ling. + Audio + Face Embeddings 0.125 0.318 0.179 0.423 0.631 0.508 0.873 0.705 0.784

use an Adam [22] optimizer with an initial learning rate of 1e-3 to
train for a maximum of 200 epochs.
SVMSMOTE: SVMSMOTE [30] addresses the imbalanced distri-
bution by over-sampling the two minority classes with synthetic
samples.
RUSBoost: RUSBoost [40] is an ensemble method that balances the
classes by under-sampling the majority class during each training
iteration. We use 1-depth Decision Tree (DT) and Logistic Regres-
sion as the weak classifiers for the ensemble, with the number of
classifiers set to 1000.

Classification results using the non-sequential baseline models
alongwith linguistic and audio features in combinationwith the two
different sets of visual features (action units and face embeddings)
are provided in Table 4. Note that for imbalanced learning methods
we report results with face embeddings only as it worked better
than in combination with action units and action units alone.

There are two main observations from the non-sequential model
results: First, all models tend to neglect the negative label regard-
less of the features used, except when using imbalanced learning
methods. This shows that in a small dataset with imbalanced distri-
bution, it is necessary to use methods that can deal with imbalanced
labels. Second, although SVMSMOTE over-samples both positive
and negative classes, it has difficulties synthesizing new negative
samples due to scarcity of existing samples and noisy transcriptions,
but it works best for the positive label with relatively high sample
numbers. RUSBoost under-samples the neutral label and hurts its
performance, while benefiting the two minority classes.

6.3 Sequential Baselines
Most advanced models for sentiment analysis in videos use aligned
feature sequences based on the temporal order. To compare sequen-
tial baselines models built with different modalities and architec-
tures, we experiment with the following methods:
GRU-all: A 2-layer Recurrent Neural Network with GRU [5] cells.
The dimension of the hidden layers is 256. The same fusion module
as described in equation 1 is used to jointly project the features
from different modalities. For language representation, we use a

200-dimensional word embedding which is updated as parame-
ters during the training procedure. GRU-all is trained with Adam
optimizer with learning rate 1e-3 and batch size 32.
Transformer: We use a transformer model with 12 layers, 12 at-
tention heads and 768-dimensional hidden states. We experiment
on single-modal Transformer with textual word embedding, ac-
tion units, face embeddings, or audio features as input. We also
experiment with a multimodal Transformer that jointly uses the
three modalities with the fusion module as described in equation 1,
namely Transformer-all. These models are trained on our MORSE
dataset from scratch without pre-training, using the AdamW [27]
optimizer for 200 epochs with initial learning rate 2e-5 and batch
size 32. During training, the gradients are clipped to have a maxi-
mum norm of 1.0.

For all the sequential models, we limit the maximum sequence
length to be 128. Table 5 shows the results of sequential base-
lines. We observe that Transformer using linguistic features per-
forms better than other Transformers using single-modal visual
and audio features, and comparable to the multimodal method
Transformer-all. This indicates that for our task, the language fea-
tures are more critical than visual and audio features. We also
observe that Transformer-all outperforms GRU-all with the same
features from all the 3 modalities. For completeness, we also trained
Transformer-all on a manually-balanced dataset with 50 training
samples for each class. The test F-score for negative, positive and
neutral labels are (0.066, 0.375, 0.519), compared to (0.133, 0.379,
0.786) using the original imbalanced training data. Thus, supporting
the use the imbalanced dataset for all of our experiments.

6.4 Two-step Fine-tuning for Multimodal
Sentiment Analysis

We implement and apply our proposed two-step fine-tuningmethod
on MORSE dataset. After the first step (language fine-tuning), we
freeze the fine-tuned TransEnc1 and use it to extract language
representations. In the second step, we fine-tune with multimodal
features using the multimodal Transformer (TransEnc2), as de-
scribed in Section 5.3. The TransEnc2 has the same structure and

Long Paper ICMI '20, October 25–29, 2020, Virtual Event, Netherlands

393



Table 5: Results of sequential models using aligned features. p, r, f stands for precision, recall and f-1 score, respectively.

Model p-neg r-neg f-neg p-pos r-pos f-pos p-neu r-neu f-neu
GRU-all

Ling.+ Audio + Face emb. 0 0 0 0.323 0.321 0.322 0.764 0.781 0.773
Transformer

Linguistic 0.073 0.385 0.123 0.402 0.552 0.465 0.836 0.623 0.714
Action units 0.333 0.077 0.125 0.238 0.149 0.183 0.737 0.844 0.786
Face embeddings 0.0 0.0 0 0.217 0.246 0.21 0.729 0.715 0.722
Audio 0.500 0.077 0.133 0.331 0.313 0.322 0.759 0.793 0.776
Transformer-all 0.500 0.077 0.133 0.371 0.388 0.379 0.781 0.791 0.786

Pre-training + Fine-tuning
BERT-Linguistic 0.608 0.365 0.441 0.615 0.557 0.581 0.850 0.883 0.866
Shifting Gate [38] 0.333 0.154 0.211 0.378 0.485 0.425 0.800 0.740 0.769
Joint-two-step (ours) 0.617 0.365 0.444 0.631 0.548 0.583 0.848 0.891 0.868

hyper-parameters as TransEnc1, but we only run step-2 fine-tuning
for 5 epochs because the model converges reasonably fast. In order
to measure the effectiveness and efficiency of our proposed two-
step fine-tuning method, we compare against the following two
fine-tuning methods that are closely related to ours:
BERT-Linguistic: We first use BERT to pre-train the textual Trans-
former TransEnc1 using an external linguistic corpus as described
in Section 5.3.1, and then perform our step-1: language fine-tuning
using the transcriptions and sentiment labels of MORSE dataset.
The fine-tuning takes 200 epochs; the learning rate and batch size
are kept the same as all the Transformer baselines. In our two-step
fine-tuning literature, this obtains the fine-tuned model after step-1
and before step-2. We name it BERT-Linguistic.
Shifting Gate: This is our implementation of the multimodal pre-
training method proposed by [38], in which a trainable shifting gate
is used to select among differentmodalities of inputs and inject them
into the BERT-Linguistic fine-tuning process. The Transformer
structure, hyper-parameters, and train settings are kept the same
as BERT-Linguistic.

The last three rows in table 5 shows the results of the fine-tuning
methods on MORSE. We point out the following observations:

• BERT-Linguistic significantly outperforms all the Transform-
ers without pre-training, which shows that transfer learning
helps solve the issues of noisy transcriptions and imbalanced
labels to some extent.

• On our MORSE dataset with scarce training samples for mi-
nority labels, the shifting gate mechanism does not seem as
effective as fine-tuning the language modality alone (BERT-
Linguistic). This is potentially because the nature of the
sentiment analysis task makes the language modality more
critical than others, but the shifting gate itself brings com-
plexity and needs sufficient data to learn which modality
to choose, otherwise it has a negative impact on the lan-
guage fine-tuning process. However, the performance is still
significantly better than Transformers without pre-training.

• Our proposed two-step fine-tuning method outperforms the
related Shifting Gate method [38] and slightly outperforms
BERT-Linguistic. This improvement comes from our two-
step paradigm: by first fine-tuning with BERT-Linguistic

and freezing it, the language representation learned by lan-
guage fine-tuning is better preserved than directly using
a shifting gate to intervene in the fine-tuning procedure.
In step 2, since the language representations are already
distinguishable enough between different classes, the joint
encoder learns to do minor corrections using the informa-
tion from visual and audio modality. This cascaded manner
fits the task intuition that language is more important than
other modalities, resulting in fast convergence and improved
performance. The performance gain is steady because we
observed that Joint-two-step is better than BERT-Linguistic
in all folds of the cross-validation.

7 CONCLUSION
In this work, we introduced a domain-specific dataset for Multi-
mOdal sentiment analysis in Real-life SEttings (MORSE). It covers
the properties of noisy transcriptions, imbalanced label distribu-
tions, and scarcity of minority labels, benefiting future research
on related issues. We provided both sequential and non-sequential
baseline methods using either single-modal or multimodal features.
The performances of these baselines illustrate the challenge of
real-life settings in our task and the necessity of transfer learning.
Based on the Transformer architecture and BERT pre-training, we
proposed a novel two-step fine-tuning method that first adapts
language representations and then incorporates visual and audio
features for multimodal fine-tuning. Experimental results show that
our method captures the characteristics of MORSE dataset well,
outperforming strong baseline models with advanced structures,
as well as fine-tuning strategies proposed by related work.
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