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Abstract—Recent technological developmentshavebeenusedextensively inmanufacturing

vehicles in order to improve thedrivingexperienceandaddmultiple safety features. This

article introducesanovelmachine learningapproachusingphysiological sensors and

thermal imagingof the subjects todetect human thermal discomfort in order todevelopa

fullyautomatedclimatecontrol system in the vehicles that doesnot needanyexplicit input

from individuals. Toachieve thisgoal, a dataset of thermal videosandphysiological signals

from50subjects is collected, anextensiveanalysisof different featuresets is conducted, a

multimodal approach is experimented, andacascadedclassificationsystem isproposed.

Our results evidently show thecapabilityof specific feature setsof detectinghumanthermal

discomfort aswell as the superior performanceof integratingmultimodal features.

& ACCORDING TO THE In-Car Study run by Arbi-

tron, drivers stay in vehicles for approxim-

ately 20 h every week.1 Hence, a real-time system

that automatically senses the state of thermal

discomfort of the vehicle’s occupants can assist

in creating better environmental conditions

inside a vehicle. Moreover, research studies

indicated that increasing the temperature in a

vehicle by four degrees Celsius can potentially

save 22% of the compressor power, which can
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approximately increase the coefficient of perfor-

mance by 13%. More importantly, a driver with a

thermally comfortable sensation will be less

stressed, less fatigued, and more alert, which

results in safer driving conditions for the vehi-

cle’s occupants as well as for pedestrians.

Currently, the traditional and most widely

used mean of controlling the parameters of a

vehicle’s environment is through a static environ-

mental condition control, which maintains the

driver’s space in a certain thermal state. Instead,

a system that is aware of the real-time thermal

sensation of a vehicle’s driver can provide an

effective assessment of the thermal conditions

and, thus, results in an increased comfort level

while improving fuel economy.

Measuring the thermal sensation levels of sub-

jects can be achieved via thermal imaging and

physiological signals. Thermal imaging is a nonin-

vasive means of capturing thermal measure-

ments from the heat-emitting sources for a wide

variety of applications. Physiological signals pro-

vide rich information on the individual’s health

status and responses to different stimuli. With

the continuous advancements in the sensors

technology, automotive companies started devel-

oping seats and seat belts that are capable of

measuring specific physiological measurements

in order to detect driver’s drowsiness, such as

the heart and respiration rates. In our previous

work, we showed that the multimodal modeling

of the human behavior achieves superior perfor-

mance compared to using a single modality.2;3

We also showed the feasibility of detecting ther-

mal discomfort using physiological signals.4

In this article, we propose a system that is

composed of a low-end thermal camera and sen-

sor-based setup that can be installed in the

steering wheels in vehicles. In particular, the

article provides four main contributions. First, a

dataset of sensorial measurements and thermal

videos of 50 human subjects is collected using

an insulating enclosure attached to an air condi-

tioning and heat pump unit to simulate the con-

ditions in vehicles. Second, we perform an

extensive analysis of the different types of sig-

nals that are collected in order to determine the

features that are most capable of indicating the

subjects’ thermal sensation. Third, we propose a

multimodal learning approach that integrates

features from the thermal and physiological

modalities to enrich the extracted features for

the learning process. Finally, we introduce a cas-

caded classification system that applies a cas-

cade of classifiers to automatically and reliably

detect human thermal discomfort.

RELATED WORK
Wearable sensors have been widely used in

order to detect different human activities5 and

human comfort levels.6 Over the past years,

extensive research has been conducted in order

to develop intelligent and autonomous vehicles

that can provide assistance for more comfortable

and safer driving.7�9

Research studies have been conducted to

detect thermal comfort levels in indoor environ-

ments.10 For instance, a nonlinear regression

model was proposed to control thermal discom-

fort indoors using the PMV model.11

An analysis of the environmental and personal

parameters affecting discomfort in vehicles is

provided in the article by Simion et al.12 It was

found that thermal sensation in vehicles varies

compared to buildings, given that other factors,

such as the interior insulation, nonuniform radi-

ant temperature, and solar radiation contribute

to the thermal feeling.

Accordingly, the capability of physiological

sensors to detect thermal discomfort was expl-

ored. For instance, skin conductance and tem-

perature sensors were used as detectors of the

body’s thermal response. Additionally, different

methods have been proposed to detect thermal

sensation using thermal imaging.13 For example,

an approach referred to as “Thermal-sense” was

proposed using thermal images to detect dis-

comfort using indicators of vasoconstriction and

vasodilation.14

DATASET

Subjects

Data acquisition was performed using an

enclosure in a laboratory at the University of

Michigan. The laboratory consisted of an insulat-

ing enclosure, four physiological sensors, and a

thermal camera. Data were collected from 50 vol-

unteers. The subjects included 18 females and 32

males with different ages and backgrounds, and
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had an age range between approximately 18 and

60. The study was advertised and the majority of

the subjects included students and staff of the

University of Michigan. The study was approved

by the IRB of the university.

Devices

The devices included four physiological sen-

sors, such as skin temperature (ST), skin conduc-

tance (SC), blood volume pulse (BVP), and

respiration rate (RR) sensors. The electrodes of

the SC sensorwere connected to the third and sec-

ond fingers of the subjects. The BVP sensor was

connected to the index finger and the ST sensor

was connected to the small finger. The RR sensor

was placed around the thoracic region. A cost-

effective FLIR One thermal camera, which can be

easily installed in vehicles, without significantly

affecting the vehicle’s price, was used to record

thermal videos of the faces of the subjects during

the comfort and discomfort stages in experiments.

Experimental Procedure

An enclosure was built in a lab using insulat-

ing material for isolation from the room tempera-

ture. An air conditioning and heat pump unit as

well as a fan and an electric heater were con-

nected to the enclosure and used to supply cold/

hot air. The enclosure contained a seat for the

subjects to sit comfortably as well as a fan and a

heater to increase the subjects’ sensation of cold

and hot, respectively. The enclosure also had a

slit to allow the connection of the physiological

sensors and the recording of the thermal camera.

The participants were given the instruction to

follow during the experiments. This was followed

by connecting the four physiological sensors to

their left hand and chest. The experiments incl-

uded three phases as follows.

Comfort First, the participants were asked to

stay inside the building until their bodies adju-

sted to the indoor temperature of the building.

Theywere then instructed to sit on the seat in the

enclosure. All of the subjects in our experiments

reported that they were feeling thermally com-

fortable andwere recorded for 4min in this stage.

Cold Discomfort During this phase, cold airwas

blown inside the enclosure using the ac unit and

the fan while the subjects were sitting inside until

the temperature inside the enclosure stabilized at

approximately 61o F. The subjects were then

recorded for 4minwith the cold air still blowing.

Hot Discomfort During this phase, the heat

pump and heater were used to blow hot air inside

the enclosure until the temperature was above

95o F. The participants were then recorded for

four additional minutes.

Thermal Sensation Rating The subjects

were asked to evaluate their thermal sensation

using the PMV ratings, which are used for indoor

steady-state conditions. The PMV ratings fall on a

scale of �3–3, for cold to hot. In particular, �3

represents cold,�2 represents cool,�1 indicates

slightly cool, 0 indicates neutral, +1 represents

slightly warm, +2 represents warm, and +3 indi-

cates hot.

The participants were asked to report their

sensation following each phase on the PMV scale.

These ratings were used as the ground truth for

our multimodal learning approach. Note that

while the physiological measurements were

extracted from all the subjects, the thermal vid-

eos were collected from 22 subjects due to an

update error in the FLIR One app.

METHODOLOGY
In this section, the process of extracting fea-

tures from the physiological modality and the

thermal videos is described.

Physiological Signals

The physiological features included the four

raw physiological signals as well as statistical

measurements derived from them. The heart

rate, skin temperature, respiration rate, and skin

conductance were collected at a sampling rate of

2048 samples/secs. The extracted measurements

also included statistical descriptors derived from

the raw signals, such as averages, power means,

epochs, standard deviation,minimum,maximum,

and features extracted from interbeat intervals.

The final set of the physiological feature

vectors included 40 heart rate, five skin tempera-

ture, seven respiration rate, and five skin con-

ductance measurements, as well as two heart

rate variability features derived from the heart

September/October 2019 5
Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on November 24,2020 at 02:13:04 UTC from IEEE Xplore.  Restrictions apply. 



rate and respiration rate sensors combined.

Hence, the final dataset consisted of 59 physio-

logical features.

Thermal Imaging

In order to create feature vectors represent-

ing the thermal signatures extracted from the

subjects’ faces, we underwent three steps includ-

ing segmentation of the faces, interesting points

tracking, and construction of thermal maps. We

proposed our tracking approach for thermal

images in the article by Abouelenien et al.4 and

we build upon our approach.

Segmenting and Tracking Thermal Faces

The thermal faces of the participants were

located in the first frame of each thermal video.

Interesting points were identified in the faces

using the Shi Tomasi detection algorithm, where

they were found at pixels with large variation in

colors, which represented different tempera-

tures, by calculating the sum of square differen-

ces between successive thermal images. In

particular, lighter colors indicated higher temper-

atures that could potentially represent the pres-

ence of veins that control the temperature of the

skin in the surrounding area.

Following the detection of interesting points,

the Kanade Lucas Tomasi tracking method15 was

applied to track these points throughout the

subjects’ responses, as shown in Figure 1(a). This

tracking algorithm works under the assumption

of a slight pixel displacement between images,

which fits the condition of a driver with limited

space to make significant movements in a car. In

order to detect outliers and uncertain points, the

forward–backward error was computed by track-

ing the points between frames back and forth.

Once the points were tracked from one frame to

the next, the bounding boxes surrounding the

faces were reconstructed by applying the similar-

ity measures using the global geometric transfor-

mation. We set a threshold of 95% matching

points between successive frames and five pixels

as the maximum allowed distance between

tracked points in order to increase the accuracy

of the tracking process. Frames that did not meet

the threshold were eliminated, and the tracking

process proceeded to the next frame.

Thermal Maps Construction Following the

segmentation and tracking processes of the ther-

mal faces, a thermal map was constructed from

each face by extracting meaningful features that

represent the temperature distribution. In order

to achieve this target, the face images were

binarized and multiplied by the original image in

order to isolate the background, assuming that

thermal faces consistently have higher tempera-

tures compared to the background. The thermal

Figure 1. (a) The Detection and tracking processes of interesting points that are usually located where there

are sharper changes in temperatures. (b) The proposed cascaded system formed of feature extraction and

integration, two-stage classification scheme, and a climate control system.
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faces were then masked and cropped to con-

struct the thermal map.

Thermal maps were constructed by extracting

meaningful statistical features that represented

the temperature distribution, represented in terms

of pixels values, in the thermal faces using the

Hue Saturation Value representation. The features

include the mean pixel value, maximum pixel

value, minimum pixel value, average of the highest

10% pixel values, min–max range, and a histogram

of 255 bins of the thermal distribution in the faces

in each frame for each of the Hue Saturation Value

channels to form a total of 780 features. The histo-

gram features were normalized in order to form a

probability distribution of the temperatures and

the feature vectors for the frames were averaged

to result in a single feature vector representing

each thermal video.

Multimodal Learning Approach

In order to evaluate our approach and the

effectiveness of the extracted features, we used

machine learning using a decision tree classifier.

This particular classifier was recommend by

previous research for detecting human-related

behaviors.2;16 The evaluation was performed

using four different ways. First, our decision tree

classifier was trained using the physiological and

thermal modalities separately in order to classify

test examples as comfort, cold, or hot. The physi-

ological modality used data from all of the 50 sub-

jects (150 instances) and from the 22 subjects (66

instances). This analysis specified the most effec-

tive sensors in identifying the thermal sensation

of the subjects. Second, instances from both the

physiological and thermal modalities from the 22

subjects were integrated using early feature

fusion. Third, we went beyond the three-class

classification scheme and expanded our appr-

oach to detect seven classes by classifying the

test vectors into three cold discomfort sensa-

tions, three hot discomfort sensations, and one

comfort sensation.

Finally, we introduced a cascaded system

formed of the two classification stages that

include three classification models. This process

is realized by first classifying unseen instances

into comfort, cold, and hot, and then, introducing

the classified instances into two separate cold

and hot classification models to determine the

different levels of cold discomfort and hot dis-

comfort. This process can be seen in Figure 1(b).

In order to have a reasonable evaluation,

leave-one-subject-out cross validation was used

with the decision tree classifier by using all three

instances of each subject for testing and all other

instances for training our system during each

fold. This was performed in order to avoid any

bias arising from having responses from any sub-

ject in both the train and test sets. The perfor-

mance was evaluated using the average overall

classification accuracy and the recall per class,

which is calculated as the number of correctly

classified instances per class divided by the total

number of instances belonging to that particular

class. Moreover, the F-measure, which is the

weighted harmonic mean of the average recall

and average precision of all classes, is used to

evaluate the performance. It should be noted that

if the true positives and false positives are equal

to zero for any specific class, then the precision

is determined as zero as well as for that class.

We also compared our results to the baseline

performance (listed in each table), which pre-

sented the prediction rate for each case using

random guessing. This baseline was selected to

ensure the system was able to learn useful infor-

mation from the extracted features and was not

performing randomly as compared to the base-

line. Moreover, given the novelty of our dataset

and our approach that relies solely on data

extracted from human responses and the fact

that earlier approaches considered, for the most

part, environmental factors, such as air tempera-

ture, humidity, and air speed without consider-

ing the actual human measurements, it was not

reasonable to compare to earlier approaches

using the PMV model.

EXPERIMENTAL RESULTS

Individual Modalities

Table 1(a) shows the average accuracy and

recall for each of the three classes using features

from individual and combined sensors. Feature

vectors with PMV ratings from �1 to �3 were

labeled as the cold class and vectors with ratings

from 1 to 3 were labeled as the hot class.

As expected, the table indicates that the skin

temperature sensor provides features that are
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capable of determining the thermal discomfort

levels of the participants. The features from the

BVP sensor achieve the second-best perfor-

mance, while the respiration rate and skin con-

ductance sensors provide a poor performance.

The table also shows that the cold class is the

best detectable sensation for the subjects reach-

ing a recall of 98% using all four raw features.

To further evaluate the improved perfor-

mance of the cold class over other classes and

analyze the reasons the skin temperature features

stand out, Figure 2 shows the sorted average tem-

peratures from the skin temperature sensor for

all 50 subjects for the cold, hot, and comfort

classes.

Three interesting observations can be noticed

in the figure. First, the cold curve is well isolated

from the other curves, whereas the hot and com-

fort curves fall in a closer range. Second, as seen

by the sorted temperatures, some ranges repre-

sent a comfortable sensation to some subjects,

whereas at the same time representing hot sensa-

tion for others. This indicates that the thermal

sensation for human is highly subjective. Finally,

the time duration needed to reach a certain level

of cold discomfort from the comfort sensation is

approximately double that is needed to transfer

from the cold sensation to the hot sensation,

which indicates that human bodies have faster

adaptation to heat.

Table 1. Average accuracy and recall for the four raw physiological signals, feature sets of individual sensors, and all

physiological features combined using data from (a) all 50 subjects for each of the cold discomfort, hot discomfort, and

comfort classes and (b) 22 subjects in addition to thermal features for each of the cold discomfort, hot discomfort, and

comfort classes, and (c) for each of the three cold discomfort, three hot discomfort, and comfort classes.

Figure 2. Sorted cold, hot, and comfortable average

temperatures for all 50 subjects.

Intelligent Transportation Systems

8 IEEE Intelligent Systems

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on November 24,2020 at 02:13:04 UTC from IEEE Xplore.  Restrictions apply. 



Table 1(b) lists similar results to Table 1(a)

using the data collected only from the 22

subjects that had thermal video recordings. The

last column in the table also lists the overall

accuracy and recall using the thermal features

for comparison. For the physiological features,

the same trends can be observed as earlier,

where the skin temperature features, followed

by the raw features, and all physiological fea-

tures combined exhibit the best performance.

However, by cross-referencing Table 1(a), it

can be noticed that there is a slight drop in accu-

racy in the majority of cases, which can be a

result of having a lower number of training

instances in each fold using 22 subjects. The

thermal features evidently exhibit improved per-

formance compared to the physiological sen-

sors, especially for the average accuracy and

recall of the comfort and hot classes. The F-

measure results agree with the accuracy as well

for both tables.

We extend the classification system to clas-

sify seven different classes of comfort and dis-

comfort sensations. Table 1(c) lists the average

accuracy and recall of the three cold discomfort,

three hot discomfort, and comfort classes for

the raw data, feature sets from individual physio-

logical sensors, all physiological features com-

bined, and the thermal features. The second

column shows the number of vectors that belong

to each class.

The table indicates that the four raw physio-

logical measurements achieve the highest accu-

racy as well as the best recall in most cases

followed by the thermal features. The perfor-

mance of the raw features, skin temperature fea-

tures, all physiological features combined, and

the thermal features is generally above the base-

line. The poorest performance is once again

achieved by the heart and respiration rate sen-

sors. The F-measure follows the same trend as

the accuracy while showing a drop in perfor-

mance as it is measured using the average recall

and precision of all the seven classes. Clearly, the

learning process fails for Cold �1 and Hot 3 clas-

ses due to training with insufficient number of

instances. In general, the process can differenti-

ate between different classes; however, it is

expected to improve with the availability of more

instances.

Bimodal Classification Into Three Classes

As it was observed earlier that the thermal

features and the skin temperature sensor achieve

improved performance, we explore the effective-

ness of integrating these features together in the

learning process.

Table 2(a) lists the overall accuracy and recall

of the three classes for the integration of the ther-

mal features with individual and combined physi-

ological features. The table indicates that the

fusion of the thermal features, especially with the

skin temperature features, exhibits superior per-

formance compared to all other fusions as well as

to their individual performances, as seen earlier

in Table 1(b). It can also be noted that the fusion

of the thermal features with the four raw features

and all physiological features combined achieves

identical performance, which indicates that the

learning process only utilized the thermal and

skin temperatures’ features through different

folds to create the classification model. The con-

fusion matrix for the “Thrm + All” is given in

Table 2(b), which is also reflected in the

improved recall of all three classes.

Bimodal Classification Into Seven Classes

The fusion of the thermal features with the

individual and combined physiological features

is extended to classify unseen instances into the

seven classes in Table 2(c). While the best accu-

racy does not exceed that of the four raw features

in Table 1(c), there is a general improvement in

the accuracy and recall figures. For instance, the

Cold �1 class exhibits improved performance

with the combination of the thermal features

with different physiological features.

Cascaded System

In order to develop a more reliable and effec-

tive approach to detect human thermal discom-

fort, we propose a cascade of decision tree

classifiers designed to learn separately different

degree of hot and cold thermal discomfort as

well to avoid the uncertainty associated with

learning from a large number of classes at once.

The proposed cascaded system includes three

separate classification models within a two-stage

classification framework.

The first stage represents a trinary classifica-

tion model that aims at classifying the human
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instances into three classes of neutral, cold, and

hot discomfort using our cross-validation tech-

nique described earlier. The second stage elabo-

rates the detection process by further classifying

the detected hot and cold groups into different

levels of hot as well as different levels of cold dis-

comfort using two parallel classification models.

In this case the training process is performed sep-

arately using only the instances detected as hot

from the first stage and using only the instances

detected as cold for the hot-level classification

model and the cold-level classification model,

respectively. The accuracy and recall results in

Table 3(a) reflect the accuracy of the input to the

Table 2. Average accuracy and recall for the fusion of the thermal features with the physiological raw signals, feature

sets from individual sensors, and all physiological features combined for (a) each of the cold discomfort, hot

discomfort, and comfort classes and (c) each of the three cold discomfort, three hot discomfort, and comfort classes.

The confusion matrices for the “Thrm+All” 3-class classification and the “Thrm+All” 7-class classification are shown in

(b) and (d), respectively.
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“Automatic Climate Control” block in Figure 1(b).

It should be noted that if an instance is misclassi-

fied using the trinary classification model in the

figure, then it will be also misclassified during the

second stage classification.

The table provides interesting observations.

First, although the best overall accuracy is simi-

lar to that in Table 2(c), having separate classifi-

cation models enriches the learning process,

which is reflected in the improvement of the

accuracy and recall figures in most cases. For

example, the Hot 3 class achieves 50% recall com-

pared to a consistent misclassification pattern in

all previous cases. This is also reflected by com-

paring the confusion matrices of “Thrm+All” in

Table 3(b) and Table 2(d). Second, interestingly

the performance of the fusion of the thermal fea-

tures with the heart rate features exceeds that of

their fusion with the skin temperature features.

This can be explained with the high recall for the

comfort class that the thermal and skin tempera-

ture features were achieving in Table 2(c), which

improved the overall accuracy. In that table, how-

ever, the performance of the other sensors was

comparable and sometimes better for classes

other than the comfort class. For the cascaded

system in Table 3(a), the performance of the

comfort class is balanced among the different

sets of features and, hence, other fusions achieve

improved performance.

CONCLUSION
In this article, we introduced a novel learn-

ing approach representing the progress of

developing a fully automated climate control

system in vehicles, which included a novel

Table 3. Average accuracy and recall of each of the three cold discomfort, three hot discomfort, and comfort classes

for the fusion of the thermal features with the physiological raw signals, feature sets from individual sensors, and all

physiological features combined using (a) the cascaded system. The confusion matrix for the “Thrm + All” for the

cascaded system is shown in (b).
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dataset and an extensive analysis of physiolog-

ical and thermal features in order to detect

human discomfort.

Our results showed that the thermal features

as well as specific physiological signals, such as

the skin temperature and all physiological fea-

tures combined were capable of indicating the

thermal discomfort state of the subjects as well as

different levels of hot and cold discomfort. Evi-

dently, the integration of the thermal features

with other physiological features enhanced the

performance significantly with a relative improve-

ment of 18.5% over the best accuracy achieved

by any single feature set. The introduced cas-

caded system enriched the learning process and

increased the reliability of the climate control

system by learning separate models for the hot

and cold discomfort. Furthermore, the separate

models shed some light on the usefulness of other

physiological features, such as the heart rate

when learning from a smaller number of instances.

It is expected that the effectiveness and reliabi-

lity of the system will increase as more data is

collected. Our analysis indicated the feasibility

of implementing automated thermal sensation

detection systems in vehicles.
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