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Abstract—Hearings of witnesses and defendants play a crucial role when reaching court trial decisions. Given the high-stakes nature

of trial outcomes, developing computational models that assist the decision-making process is an important research venue. In this

article, we address the identification of deception in real-life trial data. We use a dataset consisting of videos collected from public court

trials. We explore the use of verbal and non-verbal modalities to build a multimodal deception detection system that aims to

discriminate between truthful and deceptive statements provided by defendants and witnesses. In particular, three complementary

modalities (visual, acoustic and linguistic) are evaluated for the classification of deception at the subject level. The final classifier is

obtained by combining the three modalities via score-level classification, achieving 83.05 percent accuracy in subject-level deceit

detection. To place our results in perspective, we present a human deception detection study where we evaluate the human capability

of detecting deception using different modalities and compare the results to the developed system. The results show that our system

outperforms the average non-expert human capability of identifying deceit.

Index Terms—Real-life trial, deception detection, classification, multimodal, visual, acoustic, linguistic
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1 INTRODUCTION

WITH thousands of trials and verdicts occurring daily in
courtrooms around the world, there is a high chance

of using deceptive statements and testimonies as evidence.
Given the high-stake nature of trial outcomes, implement-
ing accurate and effective computational methods to evalu-
ate the honesty of provided testimonies can offer valuable
support during the decision-making process.

The consequences of falsely accusing the innocents and
freeing the guilty can be severe. For instance, in the U.S.
alone there are tens of thousands of criminal cases filed
every year. In 2013, there were 89,936 criminal cases fil-
ings in U.S. District Courts and in 2014 the number was
80,262.1 Moreover, the average number of exonerations
per year increased from 3.03 in 1973-1999 to 4.29 between
2000 and 2013. The National Registry of Exonerations
reported on 873 exonerations from 1989 to 2012, with a
tragedy behind each case [1]. Hence, the need arises for a

reliable and efficient system to aid the task of detecting
deceptive behavior and discriminate between liars and
truth-tellers.

Traditionally, law enforcement entities have made use of
the polygraph test as a standard method to identify decep-
tive behavior. However, this approach becomes impractical
in some cases, as it requires the use of skin-contact devices
and human expertise to get accurate readings and interpre-
tation. In addition, the final decisions are subject to error
and bias not only from the device itself but also from human
judgment [2], [3]. Furthermore, using proper countermeas-
ures, offenders can deceive these devices as well as human
experts.

Given the difficulties associatedwith the use of polygraph-
like methods, machine learning-based approaches have been
proposed to address the deception detection problem using
several modalities, including text [4] and speech [5], [6].
Unlike the polygraph method, learning-based methods for
deception detection rely mainly on data collected from
deceivers and truth-tellers. The data is usually elicited from
human contributors, in a lab setting or via crowd-sourcing [7],
[8], for instance by asking subjects to narrate stories decep-
tively and truthfully [7], by performing one-on-one inter-
views, or by participating in “mock crime” scenarios [8].

Despite their potential benefits, an important drawback
in data-driven research on deception detection is the lack of
real data and the absence of true motivation while eliciting
deceptive behavior. Because of the artificial setting, the
subjects may not be emotionally aroused or highly moti-
vated to lie, thus making it difficult to generalize findings to
real-life scenarios.

In this paper, we present a multimodal system that
detects deception in real-life trial data using verbal, acoustic
and visual modalities. The data consists of video clips
obtained from real court trials, initially presented in [9].
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Unlike previous work on this dataset, which focuses on
detecting deception at the video-level, we aim to detect
deception at the subject-level. We believe this is more in line
with the ground-truth for this dataset since it was also
obtained at the subject-level: defendants who are found
guilty at the end of the trial are labeled as deceptive since
they had not admitted to their guilt during the hearings. In
the remainder of the paper, we will refer to this task as a
subject-level deception classification.

Our main contributions are as follows:

� We introduce the subject-level deception detection as
a novel take on the problem; we argue that it is also
more appropriate for the problem given the way
ground-truth is established.

� We explore the effectiveness of a diverse set of fea-
tures extracted from the linguistic, visual, and acous-
tic channels, both separately and in combination
(using early and late fusion methods).

� We repeat the experiment 3 times with different ran-
dom seed for each test sample in the leave-one-out
cross-validation, to obtain more reliable scores with
the small dataset.

� We present a semi-automatic system that can iden-
tify deception with 83.05 percent accuracy using a
combination of automatically extracted and manu-
ally annotated features, as well as a fully-automatic
system that reaches almost 73 percent accuracy.

� We place our results in context by performing a
study where humans evaluate the presence of decep-
tion in the real-life trial dataset.

� We present insights into the problem by analyzing
the importance of features obtained manually and
automatically, as well as the linguistic differences
among deceptive and truthful subjects.

2 DATASET

During our experiments, we use a multimodal deception
dataset obtained from real-life court trials. The dataset
description is included here for completeness; further details
can be found in [9].

2.1 Dataset Overview

The dataset consists of trial hearing recordings obtained
from public sources. The videos were carefully selected to
be of reasonably good audio-visual quality and portray a
single subject with his/her face visible during most of the
clip duration.

Videos are collected from trials with different outcomes:
guilty verdict, non-guilty verdict, and exoneration. For guilty
verdicts, deceptive clips are collected from a defendant in a
trial and truthful videos are collected from witnesses in the
same trial. In some cases, deceptive videos are collected from
a suspect denying a crime he committed and truthful clips
are taken from the same suspect when answering questions
concerning some facts that were verified by the police as
truthful. For the witnesses, testimonies that were verified by
police investigations are labeled as truthful whereas testimo-
nies in favor of a guilty suspect are labeled as deceptive.
Exoneration testimonies are collected as truthful statements.

The dataset includes several famous trials (including tri-
als of Jodi Arias, Donna Scrivo, Jamie Hood, and others),
police interrogations, and also statements from the “The
Innocence Project” website.2

2.2 Subject-Level Ground-Truth

In the original dataset, the ground-truth was obtained at
video level, by carefully identifying and labeling truthful
and deceptive video clips from trial’s recordings [9].

In this work, we focus on deception at the subject level
for two reasons: 1) it is difficult to know the ground-truth of
all video clips with certainty and 2) the ultimate goal is to
determine whether an individual is being deceptive or not,
rather than pinpoint exactly when s/he is lying. Note that
subject-level decision is what human jurors are also asked
to accomplish during real life trials consisting of several
interrogation episodes.

To obtain subject-level ground truth, we only used the
trial outcomes to indicate the subject as deceptive or not
(deceptive in case of a guilty verdict versus not-deceptive in
case of non-guilty verdict or exoneration). The resulting
subject-level dataset has 59 instances, and the distributions
of male versus female and deceptive versus truthful are
given in Table 1.

Note that a subject-level deception detection system can
be evaluated fairly, by comparing its predictions to the
subject-level ground-truth, which is the trial outcome, with
the assumption that the trial outcome is correct.

2.3 Transcriptions

The transcriptions are obtained using Amazon Mechanical
Turk in the original dataset. In video clips where multiple
speakers are portrayed (i.e., defendants or witnesses being
questioned by attorneys), the AMT workers were asked to
transcribe only the subject’s speech, including word repeti-
tions, fillers such as um, ah, and uh, and intentional silences
encoded as ellipsis.

The final set of transcriptions consists of 8,055 words,
with an average of 66 words per transcript. Table 2 shows
transcriptions of sample deceptive and truthful statements.

2.4 Visual Behavior Annotations

Gesture annotations are also available in the dataset.3 The
annotation was conducted using the MUMIN [10] multi-
modal scheme, which includes several different facial
expressions associated with overall facial expressions, eye-
brows, eyes and mouth movements, gaze direction, as well

TABLE 1
Distribution of Gender in the Two Categories

After Aggregating Individual Videos

Female Male Total

Deceptive 11 13 24
Truthful 12 23 35
Total 23 36 59

2. http://www.innocenceproject.org/
3. As done in the Human Computer Interaction Community,

”gesture” is used as a broad term that refers to body movements,
including facial expressions and hand gestures.
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as head and hand movements. Sample screenshots showing
facial displays and gestures by deceptive and truthful sub-
jects in the dataset are shown in Fig. 1.

This annotation was done at the video-level by identify-
ing the facial displays and hand gestures that were most fre-
quently observed during the entire clip duration. Two
annotators independently labeled a sample of 56 videos.
The inter-annotator agreement for this task is shown in
Table 3. The agreement measure represents the percentage
of times the two annotators agreed on the same label for

each gesture category. For instance, 80.03 percent of the
time the annotators agreed on the labels assigned to the Eye-
brows category. On average, the observed agreement was
measured at 75.16 percent, with a Kappa of 0.57 (macro-
averaged over the nine categories).

As a preliminary analysis, Fig. 2 shows the percentages of
all the non-verbal features for which we observe noticeable
differences for the deceptive and truthful groups. The figure
suggests eyebrow (rise) helps differentiate between the
deceptive and truthful conditions. Twyman et al. reported
that deceivers’ right hand moves less during a mock crime
experiment [11]. This coincides with our single and both
hands movement analysis as depicted in Fig. 2. ten Brinke
and Porter [12] reported that deceptive people blink at a
faster rate than genuinely distressed individuals; which also
coincides with our findings that deceivers display more fre-
quent occurrence of rapid eye closures, as seen in Fig. 2.).
Interestingly, deceivers seem to shake their head (Side-
Turn-R) and nod (Down-R) less frequently than truth-tellers
while true-tellers seem tomove their handsmore frequently.

3 FEATURES FOR DECEPTION DETECTION

Aiming to explore the subject-level deception detection with
different levels of supervision, we conduct two main

TABLE 2
Sample Transcripts for Deceptive and Truthful Clips in the Dataset

Truthful Deceptive

We proceeded to step back into the living room in front of
the fireplace while William was sitting in the love seat. And
he was still sitting there in shock and so they to repeatedly
tell him to get down on the ground. And so now all three of
us are face down on the wood floor and they just tell us
“don’t look, don’t look” And then they started rummaging
through the house to find stuff...

No, no. I did not and I had absolutely nothing to do with her
disappearance. And I’m glad that she did. I did. I did. Um
and then when Laci disappeared, um, I called her
immediately. It wasn’t immediately, it was a couple of days
after Laci’s disappearance that I telephoned her and told her
the truth. That I was married, that Laci’s disappeared, she
didn’t know about it at that point.

Fig. 1. Sample screenshots showing facial displays and hand gestures from real-life trial clips. Starting at the top left-hand corner: deceptive trial with
forward head movement (Move forward), deceptive trial with both hands movement (Both hands), deceptive trial with one hand movement (Single
hand), truthful trial with raised eyebrows (Eyebrows raising), deceptive trial with scowl face (Scowl), and truthful trial with an up gaze (Gaze up).

TABLE 3
Gesture Annotation Agreement

Gesture Category Agreement Kappa Score

General Facial Expressions 66.07% 0.328
Eyebrows 80.03% 0.670
Eyes 64.28% 0.465
Gaze 55.35% 0.253
Mouth Openness 78.57% 0.512
Mouth Lips 85.71% 0.690
Head Movements 69.64% 0.569
Hand Movements 94.64% 0.917
Hand Trajectory 82.14% 0.738

Average 75.16% 0.571
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experiments using features obtained either manually or
semi-automatically. We first present a semi-automatic sys-
tem where the linguistic and visual feature extraction is
done based on manual annotations, as described in Section 2.
Second, we build a fully-automatic system that does not rely
on human input. Finally, we compare the results with that
of human performance on deception detection.

Given the multimodal nature of our dataset, we were
interested to evaluate the usefulness of the linguistic, visual,
and acoustic components of the recordings, both individu-
ally and in combination. Note that automatic temporal anal-
ysis of the videos would be significantly more complicated
to accomplish and would require a larger dataset to prevent
overfitting; hence it is outside of the scope of this paper. The
feature extraction process is detailed below.

3.1 Linguistic Features

We experimented with linguistic features that have been
previously found to correlate with deception cues [13], [14].
These features are derived from the text transcripts of the
subjects’ statements.

Unigrams. We extract unigrams derived from the bag of
words representation of each transcript. Each feature
consists of frequency counts of uniquewords in the tran-
script. For this set, we keep only words with a frequency
greater than or equal to 10. The threshold cut was experi-
mentally obtained in a small development set.

LIWC. We use features derived from the Linguistic Inquire
Word Count (LIWC) lexicon [14]. These features consist
of word counts for each of the 80 semantic classes in
LIWC. For instance, the class “I” includes words associ-
ated with the self (e.g., I, me, myself); “Other” includes
words associated with others (e.g., he, she, they); etc.

3.2 Annotated Visual Behaviour Features

One set of visual features are derived from the annotations
performed using the MUMIN coding scheme described in
Section 2.4. We create a binary feature for each of the 40
available gesture labels. Each feature indicates the presence
of a gesture only if it is observed during the majority of the
interaction. The generated features represent nine different

gesture categories listed in Table 3, covering 32 facial dis-
plays and 7 hand gestures.

Facial Displays. These are facial expressions or head move-
ments displayed by the speaker during the deceptive or
truthful interaction. They include overall facial expres-
sions such as smiling and scowling; eyebrows, eyes and
mouth movements (e.g., repeated eye closing or pro-
truded lips); gaze direction (e.g., looking down or
towards the interlocutor); and as well as head move-
ments (e.g., repeated nodding or shaking) and hand
movements.

Hand Gestures. The second broad category covers gestures
made with the hands, including movements of one or
both hands and their trajectories.

3.3 Automatically Extracted Visual Features

We automatically extract a second set of visual features
consisting of assessments of several facial movements as
described below:

Facial Action Units (FACS). These features denote the pres-
ence of facial muscle movements that are commonly
used for describing and classifying expressions [15].

We use the OpenFace library [16] with the default multi-
person detection model to obtain 18 binary indicators of
Action Units (AUs) for each frame in our videos. These
include: AU1 (inner brow raiser), AU2 (outer brow raiser),
AU4 (brow lowerer), AU5 (upper lid raiser), AU6 (cheek
raiser), AU7 (eyelid tightener), AU9 (nose wrinkler), AU10
(upper lip raiser), AU12 (lip corner puller), AU14 (dimpler),
AU15 (lip corner depressor), AU17 (chin raiser), AU20 (lip
stretcher), AU23 (lip tightener), AU25 (lips part), AU26 (jaw
drop), AU28 (lip suck), and AU45 (blink). We average these
binary indicators through the frames and obtain a single
AU feature for each video.

3.4 Acoustic Features

Previous work has suggested that pitch is an indicator of
deceit, and showed that people tend to increase their pitch
when they are being deceptive [17]. This motivated us to
explore whether subjects will show particular pitch differ-
ences in their speech while telling the truth or deceiving.

Fig. 2. Distribution of important visual features for deceptive and truthful groups: Smile, Close-R (closing eyes repeatedly), Side-Turn-R (head turning
sides repeatedly), Raise (eyebrow raising), Interlocutor (gazing towards interlocutor), side (gazing to the sides), Down-R (moving the head down-
wards repeatedly), Single-H (single hand movement), Both-H (moving both hands).
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In addition to pitch, we extracted acoustic features for
voiced segments and pauses, based on previous findings
showing that deceivers produce slightly shorter utterances
and pause more frequently than true-tellers [18]. The
extracted acoustic features are as follows.

Pitch. We derive features from pitch measurements in the
audio portion of each video in the dataset. To estimate
pitch, we obtained the fundamental frequency (f0) of
the defendants’ speech using the STRAIGHT toolbox
[19]. Since f0 is defined only over voiced parts of the
speech, we remove unvoiced speech frames from our
calculations. We then derive two features (mean and
standard deviation) from the raw f0 measurements:
mean�f0 and stdev�f0.

Silence and Speech Histograms. To obtain these features,
we run a voice activity detection (VAD) algorithm [20]
to obtain the speech and silent segments in the subject’s
speech. Since the performance of VAD algorithms is
affected by the segmentation threshold u, i.e., high val-
ues of u result on over-segmentation while low values
produce under segmentation, we experiment with two
values of u to improve the VAD segmentation in our
data: 0.01 and 0.2. After manual inspection, we observed
that using a threshold of 0.2, the algorithm segment the
audio into words rather than full sentences while a
threshold of 0.01 produces full sentence segmentation.
Using a VAD threshold of 0.2, with the intent of captur-
ing short pauses, we extract the histograms (using 25
bins) of both voiced and silent segments as features.

Fig. 3 shows the distribution of the mean and standard
deviation of pitch frequencies for the deceptive and truthful
groups by gender. As can be seen in this figure, pitch mean
values depend on the gender, while standard deviation
seems more correlated with deception. Fig. 4 depicts the his-
tograms of speech and silent lengths by deceptive and truth-
ful subjects. Interestingly, the plot shows that deceptive
individuals tend to make shorter pauses more frequently
than truthful individuals.

3.5 Subject-Level Feature Integration

Since our feature extraction is performed in each video clip
separately for visual features and there are cases where

there is more than one video for a single subject, we devised
two strategies to aggregate the features across all videos
from the same subject. First, taking the maximum values
per feature across feature vectors corresponding to every
subject’s video. Second, averaging the feature values across
feature vectors corresponding to each subject’s video.

Taking the maximum of the feature values aims to repre-
sent single events (e.g., eyes blinking), even if it is observed
in just one of the videos belonging to a subject. Averaging
the feature values, on the other hand, aims to reduce poten-
tial noise introduced during the manual annotation.

During our initial experiments, we found that the averag-
ing strategy outperforms the use of maximum values, hence
the former is used during the rest of the experiments reported
in the paper.

4 CLASSIFIERS

We chose the Random Forest (RF), Support Vector Machine
(SVM) with Radial Basis Function kernel and Neural Net-
work (NN) classifiers, due to their success in many other
machine learning problems. For the RF and SVM, we use
their implementations as available in Matlab. We use the
PyTorch library for the implementation of the NN classi-
fiers [21]. During our experiments, all classifiers are evalu-
ated using accuracy and area under the curve (AUC) as our
main performance metrics.

For the SVM classifiers, we performed parameter tuning
over the training set using 4-fold cross-validation separately
for each test instance. Specifically, we tune the penalty (C)
and the g parameters of the RBF kernel using grid-search.
We applied a 3� 3 averaging filter to the resulting loss
matrix of the grid search to smooth the parameter tuning
results to reduce the noise that results from the low number
of data points.

For the RF classifiers, we used the default value for the
number of trees (100) and minimum leaf size of 3, without
doing parameter optimization.

For theNNclassifier, we used a two hidden layers network
(100 and 500 nodes for the hidden layers) along with a soft-
max activation function and a cross-entropy loss function. L2

Fig. 3. Pitch standard deviation versus pitch mean by gender. Fig. 4. Histograms of speech and silence length (measured in seconds)
using 25 bins. In all cases, the last bin contains speech or silence seg-
ments with duration greater than 3 seconds.
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regularization is applied with a weight of 1E � 5, to prevent
over-fitting.

A strong advantage of using RF and the NN classifiers is
that they are quite insensitive to the values of their meta-
parameters. For instance, when evaluated with different
number of hidden nodes in either layer fð10; 100Þ, (100,100),
(500,500), (500,10), (100,10), ð10; 500Þg, the NN showed a
performance variation of only 1 percent.

5 SEMI-AUTOMATIC DECEPTION DETECTION

We develop a semi-automatic system using features derived
from manually annotated modalities (visual and linguistic),
along with automatically extracted features (speech). Thus,
we run several comparative experiments using leave-one-
out cross-validation where we test in a single test subject
and train in the remaining ones. Furthermore, we run all
experiments three times with different random seeds and
report the mean and the standard deviation of the results.

5.1 Results for Individual Modalities

We initially conduct experiments using each feature set
independently and then experiment with different feature
combinations using the SVM, RF, and NN classifiers. Table 4
shows the results for individual and combined sets of fea-
tures in each modality.

Among the different classifiers, the RF classifier is the
best classifier for linguistic and acoustic features, while the
NN performs best with the visual features. For the visual
features, the best results are achieved with the facial dis-
plays, reaching an accuracy of 80.79 percent and an AUC
score of 0.94. These results also constitute the best results
across individual feature sets. For the acoustic features, the
best performing feature is the pitch stdv, which represents
the standard deviation of the subject’s pitch, resulting in an
accuracy of 71.19 percent and an AUC score of 0.79. The rest
of the acoustic features obtain significantly lower perfor-
mance than pitch stdv alone. For the linguistic features, the
classifier built with the unigram features outperformed
both LIWC features alone and its combination with LIWC

features. The highest accuracy with lexical features is 64.41
percent with the RF classifier.

5.2 Results for Combined Modalities

For the multi-modal approach, we conduct experiments
using two different integration strategies of the three
modalities in our dataset: early fusion and late fusion.

5.2.1 Early Fusion

First, we experiment with early fusion by concatenating the
best performing feature sets from the three modalities and
using the different classifiers. Results are shown in Table 5.

During these experiments, the NN classifier consistently
obtains the best results among different feature combinations
aswell as the lowest standard deviation through 3 repetitions
of the experiments. Among the different combinations, the
combination of features encoding the facial displays, pitch
and silence and speech histograms achieve the highest accu-
racy (83.05 percent), improving the accuracy obtained with
facial display features only by 2.26 percent points. However,
in terms of the AUC, the combination of facial displays and
the pitch standard deviation performs the best (0.95).

5.2.2 Late Fusion

Second we use score-level fusionwith classifiers built for indi-
vidual modalities. For these experiments, we use only the
best classifiers and features, leaving out the SVM classifier
and hand’s gesture features. The aggregated score si is
obtained as shown in Equation (1), where sij is the score of
class ci obtained with the classifier hj and wj is the weight
assigned to the classifier hj

si ¼
X

j

wjsij: (1)

We use different classifier weights for the facial displays
using increments of 0.1 (the remaining weights are assigned
equally to the other classifiers) and report results on the test
set. Thus, the best scoring setting is obtained a posteriori.

TABLE 4
Individual Feature Performance: Accuracy (%) and AUC Scores

Feature Set (dimension) SVM RF NN

Accuracy AUC Accuracy AUC Accuracy AUC

Visual

Facial displays (32) 76.27� 0.00 0.8581 76.27 � 1.69 0.9270 80.79 � 0.98 0.9416
Hand gestures (7) 50.28 � 3.53 0.7232 64.97 � 3.91 0.6671 61.58 � 0.98 0.6930
All visual (39) 58.19 � 0.98 0.8641 77.40 � 0.98 0.9187 78.53 � 1.96 0.9377

Acoustic

Pitch (std-f0) (1) 61.58 � 0.98 0.6507 71.19 � 3.39 0.7939 51.41 � 0.98 0.7427
Pitch (mean-f0) (1) 54.24 � 1.69 0.5223 53.11 � 0.98 0.5465 61.02 � 0.00 0.5235
Sil.Sp.Hist (50) 57.63 � 0.00 0.4159 59.32 � 2.94 0.7069 55.93 � 1.69 0.6483
All Acoustic (52) 56.50 � 2.59 0.5864 63.28 � 0.98 0.7059 61.02 � 4.48 0.6589

Linguistic

Unigrams (134) 53.11 � 1.96 0.7275 64.41 � 4.48 0.6173 63.28 � 0.98 0.7651
Unigrams - LIWC (100) 52.54 � 4.48 0.5906 63.84 � 2.59 0.6764 55.93 � 1.69 0.7729
All Linguistic (234) 53.11 � 4.27 0.6765 61.58 � 2.59 0.6605 57.63 � 1.69 0.7655

Best results in each line are shown in bold.
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Classification results obtainedwith this strategy are shown
in Table 6. We observe that the best result (84.18 percent) is
obtained using the NN classifier and the combination of
visual features and acoustic features. This result is higher
than the best result obtained with early fusion since it finds
the best weights over the test set; but the improvement is very
small. The best early fusion results are reported as the
proposed system’s result, throughout the paper.

6 FULLY-AUTOMATIC DECEPTION DETECTION

We also conducted a set of experiments where we explore
how well fully automatic feature extraction would work, for
our task. Since our acoustic features are already obtained
using automatic methods, we focus on the automatic extrac-
tion of linguistic and visual features.

We used the OpenFace library [16] with the default
multi-person detection model, to obtain the facial action
units (see Section 3.3) for the subject in the video. To address
cases where the model identifies multiple persons in the
frames, we select the person who is present in the majority
of frames as the person of interest. We manually verified
the result of this heuristic and confirmed that in most cases
the selection corresponds to the main subject in the video.
The software was unable to identify the subject’s face in
four videos in the dataset, due to the low video quality.
These videos are nonetheless included in the evaluation, so
as to measure the performance of the system under realistic
conditions.

To extract the linguistic features, we applied Automatic
Speech Recognition (ASR) to the videos using the Google
Cloud Speech API [22] and obtained the corresponding

transcriptions. Then, as in the manual system, we use these
transcriptions to extract unigram features. One shortcoming
of the automation here is that the transcriptions also contain
the interviewer’s speech. Furthermore, the ASR failed to
recognize any speech for 10 videos, which correspond to
three subjects in the dataset. The obtained transcriptions
resulted in an average Word Error Rate (WER) of 0.603 and
an insertion rate of 0.152.

The results of the automatic deception system are
depicted in Table 7. We see that the performance obtained
by classifiers build with automatic visual features falls
behind the performance obtained when using manual anno-
tations, while automatic extraction of the linguistic features
results in a similar performance. As for combined modali-
ties, we see that the best result, 72.88 percent, (obtained
with the fully automatic system, score-level combination,
and the NN classifier) is significantly lower than the best
performance with the semi-automatic system, 83.05 percent.
However, we would expect the performance gap would to
be smaller when using videos that have better visual quality

TABLE 6
Late Fusion Results Using Best Performing Features and Different Classifier Weight Combinations

Score RF NN

+Acoustic +Linguistic +Acoustic +Linguistic +Acoustic +Linguistic +Acoustic +Linguistic

wface ¼ 1:0 76.84 � 0.80 80.79 � 0.98

wface ¼ 0:9 77.40 � 0.98 77.97 � 1.69 77.40 � 0.98 81.92 � 0.98 83.05 � 0.00 81.92 � 0.98
wface ¼ 0:8 77.40 � 2.59 77.97 � 1.69 77.40 � 0.98 83.62 � 1.96 79.66 � 0.00 83.05 � 0.00
wface ¼ 0:7 79.10 � 2.59 76.84 � 0.98 78.53 � 1.96 84.18 � 0.98 80.79 � 0.98 81.92 � 1.96
wface ¼ 0:6 76.84 � 0.98 76.27 � 0.00 76.84 � 1.96 84.18 � 1.96 79.66 � 1.69 82.49 � 0.98
wface ¼ 0:5 76.27 � 1.69 68.93 � 2.59 74.01 � 5.18 81.92 � 0.98 78.53 � 0.98 83.62 � 1.96

Face refers to facial displays and pitch refers to std-f0. The results are obtained a posteriori and best results are shown in bold.

TABLE 5
Early Fusion Results Using Individual Best Performing Features: Accuracy and AUC Scores

Modalities SVM RF NN

Accuracy AUC Accuracy AUC Accuracy AUC

Facial Displays 76:27� 0:00 0.8581 76.84 � 0.80 0.9270 80.79 � 0.98 0.9416
+ Pitch (std-f0) 53.11 � 5.45 0.7148 62.71 � 1.69 0.6511 82.49 � 0.98 0.9462
+ Pitch (std-f0) + Sil.Sp.Hist. 68.93 � 0.98 0.8585 66.10 � 11.86 0.8649 83.05 � 1.69 0.9166
+ All Acoustic 72.32 � 0.98 0.8604 67.80 � 2.94 0.8482 82.49 � 0.98 0.9153
+ LIWC 54.24 � 1.69 0.8173 63.84 � 1.96 0.7778 75.14 � 1.96 0.8961
+ Unigrams 55.93 � 3.39 0.7928 63.28 � 0.98 0.7310 78.53 � 0.98 0.8903
+ Pitch (std-f0) + Sil.Sp.Hist. + LIWC 53.67 � 3.53 0.8281 65.54 � 1.96 0.7852 75.14 � 1.96 0.8780
+ All Acoustic + Unigrams 57.06 � 0.98 0.8072 63.84 � 3.53 0.7494 75.71 � 0.98 0.8778

Best results are shown in bold.

TABLE 7
Fully-Automatic System: Classification Accuracies With

Individual and Combined Modalities (%)

Modality SVM RF NN

Visual (Action Units) 53.67% 61.58% 57.63%
All Acoustic 56.50% 63.28% 61.02%
Linguistic (Unigrams) 57.06% 63.28% 71.75%
All (Early Fusion) 58.76% 68.36% 70.06%
All (Combiner) 56.50% 63.28% 72.88%
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e.g., videos obtained with high-resolution cameras focused
on the subject’s face.

7 HUMAN PERFORMANCE

The average human ability to detect deception is reported
to be at chance level, while law enforcement professionals
can reach 70 percent [23], [24]. As part of our work analyz-
ing the importance of multi-modal features in deception
detection, we conduct a study where we evaluate the
human ability to identify deceit on trial recordings when
exposed to four different modalities: Text, consisting of the
language transcripts; Audio, consisting of the audio track
of the clip; Silent video, consisting of only the video with
muted audio; and Full video where audio and video are
played simultaneously.

We create an annotation interface that shows instances
for each modality in random order to each annotator, and
ask him or her to select a label of either “Deception” or
“Truth” according to his or her perception of truthfulness
or falsehood. The annotators did not have access to any
information that would reveal the true label of an instance.
The only exception to this could have been the annotators’
previous knowledge of some of the public trials in our data-
set. A discussion with the annotators after the annotation
took place, indicated however that this was not the case.

To avoid annotation bias, we show the modalities in the
following order: first we show either Text or Silent video,
then we show Audio, followed by Full video. Note that apart
from this constraint, which is enforced over the four modali-
ties belonging to each video clip, the order in which instan-
ces are presented to an annotator is random.

Three annotators labeled all 121 video clips in our data-
set, which portray 59 different subjects. To calculate the
agreement at the subject-level, we apply majority voting to
the labels assigned by each annotator over all the clips
belonging to the same subject. We resolve ties by randomly
choosing between the deceptive and truthful labels. Table 8
shows the observed agreement and Kappa statistics among
the three annotators for each modality.4 We observe that the
agreement for most modalities is rather low and the Kappa
scores show mostly poor agreement. As noted before by Ott
et al. [25], this low agreement can be interpreted as an indi-
cation that people are poor judges of deception.

In addition, we compare the performance of the three
individual annotators and the developed systems, over the
four different modalities in the dataset. As shown in Table 9,
we observe a positive trend in human accuracy in the

subject-level deceit detection when usingmultiple modalities.
The trend could be explained by having more deception cues
available to them. On average, the poorest accuracy is
obtained on text only, followed by Audio, Silent video, and Full
video, where the annotators have the highest performance.
Interestingly, we notice a similar pattern for the developed
systems, where we see that having a greater amount of multi-
modal cues does help to improve the system performance.
The fully-automatic system outperforms the average human
performance when using each modality individually and in
combination (72.88 versus 71.79 percent). Furthermore, it
achieves almost 30 percent reduction in error compared to the
lowest performing human annotator’s performance. The
semi-automatic system further improves the results of the
fully automatic system when using the three modalities (full
video), thus suggesting that the feature fusion strategy is also
an important aspectwhen building thesemodels..

Overall, our study indicates that detecting deception is
indeed a difficult task for humans and further verifies previ-
ous findings where the average human ability to spot liars
was found to be slightly better than chance [23]. Moreover,
the performance of the human annotators appears to be sig-
nificantly below that of the developed systems.

8 INSIGHTS FOR DECEPTION DETECTION

8.1 Visual Features

We compute the feature importance scores using the predic-
torImportance function of Matlab [26] that bases its estimate
on the performance change in the random forest classifier,
with the use of each feature. Importance measures of visual
AU features are depicted in Fig. 5. We see that features
describing actions of lips reveal substantial deception infor-
mation (Upper Lip Raiser, Lip Stretcher, Lip Tightener, Lip
Corner Depressor, Lip Corner Puller). In addition, (eye)Lid
Tightener, Nose Wrinkler, Brow Lowerer and Inner Brow
Raiser also have high importance scores.

8.2 Deception Language in Trials

To obtain insights into linguistic behaviors displayed by
liars during court hearings, we explore patterns in word
usage according to their ability to distinguish between the
subjects’ deceptive and truthful statements. We thus trained
a binary Naive Bayes (NB) classifier that discriminates
between liars and true-tellers using the unigram features
obtained from the subject’s statements. We then use the NB
model to infer the expected probabilities of each word given
its class label. We then sort the words by importance using

TABLE 8
Agreement Among Three Human Annotators on Text,

Audio, Silent Video, and Full Video Modalities

Modality Agreement Kappa

Text 30.76% 0.014
Audio 53.84% 0.040
Silent video 53.84% 0.040
Full video 53.84% 0.050

TABLE 9
Classification Accuracy of Three Annotators (A1, A2, A3) and

the Developed Systems on the Real-Deception Dataset
Over Four Modalities

Text Audio Silent video Full video

A1 69.23% 69.23% 69.23% 61.53%
A2 53.84% 61.53% 61.53% 76.92%
A3 69.23% 76.92% 76.92% 76.92%
Average 64.10% 69.22% 69.22% 71.79%

Fully-autom. sys. 71.75% 63.28% 61.58% 72.88%
Semi-autom. sys. 64.41% 63.28% 80.79% 75.71%

4. Inter-rater agreement with multiple raters and variables. https://
nlp-ml.io/jg/software/ira/
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the following scoring formula:

si ¼ E½fijclass ¼ deceptive�=E½fijclass ¼ truthful�; (2)

In this equation, the expectation E of the word fi is com-
pared across the deceptive and truthful classes. Note that
expectation values are obtained from the resulting NB
model rather than empirically from the dataset. The words
that are more strongly associated with the deceptive and
truthful groups are shown below :

Deceptive Words: not, he, do, ’m, would, his, no, an, mean,
with, uh, just, n’t, at, but, want, did, if, a, her, any, very,
never , . . .

Truthful Words: . . . , by, so, then, other, was, had, all,
through, started, up, on, the, years, two, my, when, of,
to, from, um.

In each set, words are shown in decreasing score order
i.e., from most deceptive (”not”) to most truthful (”um”).
We see that negative words such as “not”, “no” and “n’t”
have higher scores, suggesting that deceptive subjects often
focus on denying the accusations, whereas truthful subjects
are more focused on explaining past events. This coincides
with the meta-analysis work of Hauch et al. which shows
that deceptive statements have slightly more negative utter-
ances than truthful statements.

Also extreme quantifiers (i.e., “any”, “never”, “very”)
occur more frequently in deceptive statements. Houch et al.
investigated the effect of certainty on deception and,
altough certainty indicating words did not have significant
effects on deception, they revelead that “deceptive accounts
contained slightly fewer tentative words (such as ‘may’,
‘seem’, ‘perhaps’) than truthful accounts” [27]. They com-
mented on the possibility of liers’ motivation to appear
credible. Our findings do not coincide exactly, but they are
in the same direction.

Newman et al. have found that deceivers have a tendency
to use fewer self-referencing expressions, such as “I”, “my”,
“mine” [6]. This coincides with our findings, because self-
referencing words do not appear among the most deceptive
words; while the word “my” is one of the most truth-
indicating words.

Interestingly, the word “uh” indicates deception whereas
the word “um” indicates truthfulness despite both words
having the function of pausing.

9 RELATED WORK

9.1 Verbal Deception Detection

Initial work on deception detection focused on statistical
methods to identify verbal cues associated with deceptive
behavior. Bachenko et al. selected 12 linguistic indicators of
deception, including lack of commitment to a statement or
declaration, negative expressions, and inconsistencies with
respect to verb and noun forms [28]. They extracted and
analyzed the effect of these indicators on deception for a
textual database of criminal statements, police interroga-
tions, depositions and legal testimony. Hauch et al. con-
ducted a meta-study covering 44 studies with a total of 79
linguistic deception cues and obtained a robust analysis of
verbal deceptive indicators [27].

To date, works on verbal-based deception detection have
explored the identification of deceptive content in a variety
of domains, including online dating websites [29], [30],
forums [31], [32], social networks [33], and consumer report
websites [25], [34]. Research findings have shown the effec-
tiveness of features derived from text analysis, which fre-
quently includes basic linguistic representations such as n-
grams and sentence count statistics [7], and also more com-
plex linguistic features derived from syntactic CFG trees and
part of speech tags [4], [35]. Some studies have also incorpo-
rated the analysis of psycholinguistics aspects related to the
deception process. Some research work has relied on the Lin-
guistic Inquiry and Word Count (LIWC) lexicon [14] to build
deception models using machine learning approaches [7],
[36] and showed that the use of psycholinguistic information
was helpful for the automatic identification of deceit. Follow-
ing the hypothesis that deceivers might create less complex
sentences to conceal the truth and being able to recall their lies
more easily, several researchers have also studied the relation
between text syntactic complexity and deception [37].

There is a also significant amount of social science literature
that statistically analyzes verbal indicators for deception.
Burns et al. extracted LIWC indicators from transcriptions of a
set of 911 calls [38]. They fed these indicators as features to
machine learning classifiers and obtained an accuracy of 84
percent. Burgoon et al. examined linguistic and acoustic fea-
tures extracted from a company’s quarterly conference call
recordings using the Structured Programming for Linguistic
Cue Extraction (SPLICE) toolkit [39]. They analyzed the strate-
gic and nonstrategic behaviors of deceivers by annotating
utterances as prepared (presentation) and unprepared (Q&A)
responses and reported significant differences between these
two, in terms of deceptive feature statistics. Larcker and Zako-
lyukina also applied linguistic analysis on conference call
recordings from CEOs and CFOs and obtained significantly
better deception prediction than a random guess [40], [41].
Fuller et al. analyzed verbal cues developed by Zhou et al. [42],
[43] and their revised framework usingwritten statements pre-
pared by suspects and victims of crimes onmilitary bases [44].
Braun et al. used LIWC indicators to investigate deceptive
statements made by politicians labeled by editors of the
politifact.comwebsite and reported deceptive linguistic indica-
tors in interactive and scripted settings separately [45].

While most of the data used in related research was
collected under controlled settings, only a few works have
explored the used of data from real-life scenarios. This can be

Fig. 5. Visual feature importance for automatically extracted AU features.
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partially attributed to the difficulty of collecting such data, as
well as the challenges associated with verifying the deceptive
or truthful nature of real-world data. To our knowledge, there
is very little work focusing on real-life high-stake data. The
work presented by Vrij and Mann (2001) was the first study,
to the best of our knowledge, on a real-life high-stake scenario
including police interviews of murder suspects [46]. Ten
Brinke et al. worked on a collection of televised footage from
individuals pleading to the public community for the return
of amissing relative [12]. Thework closest to ours is presented
by Fornaciari and Poesio [47], which targets the identification
of deception in statements issued by witnesses and defend-
ants using a corpus collected from hearings in Italian courts.
Following this line of work, we present a study on deception
detection using real-life trial data and explore the use ofmulti-
plemodalities for this task.

9.2 Non-Verbal Deception Detection

Earlier approaches to non-verbal deception detection relied
on polygraph tests to detect deceptive behavior. These tests
are mainly based on physiological features such as heart
rate, respiration rate, and skin temperature. Several stud-
ies [2], [3], [48] indicated that relying solely on such physio-
logical measurements can be biased and misleading.
Chittaranjan et al. [49] created audio-visual recordings of
the “Are you a Werewolf?” game to detect deceptive behav-
ior using non-verbal audio cues and to predict the subjects’
decisions in the game. In order to improve lie detection in
criminal-suspect interrogations, Sumriddetchkajorn and
Somboonkaew [50] developed an infrared system to detect
lies by using thermal variations in the periorbital area and
by deducing the respiration rate from the thermal nostril
areas. Granhag and Hartwig [51] proposed a methodology
using psychologically informed mind-reading to evaluate
statements from suspects, witnesses, and innocents.

Facial expressions also play a critical role in the identifica-
tion of deception. Ekman defined micro-expressions as rela-
tively short involuntary expressions, which can be indicative
of deceptive behavior [52]. Moreover, these expressions
were analyzed using smoothness and asymmetry measure-
ments to further relate them to an act of deceit [53]. Ekman
and Rosenberg [54] developed the Facial Action Coding Sys-
tem (FACS) to taxonomize facial expressions and gestures
for emotion- and deceit-related applications. Bartlett et al.
[55] introduced a real-time system to identify deceptive
behavior from facial expressions using FACS. Tian et al. [56]
considered features such as face orientation and facial
expression intensity. Owayjan et al. [57] extracted geometric-
based features from facial expressions, and Pfister and Pieti-
kainen [58] developed a micro-expression dataset to identify
expressions that are clues for deception. Blob analysis was
used to detect deceit by tracking the handmovements of sub-
jects and extracting color features using hierarchical Hidden
Markov Model [59], [60]. Meservy et al. [61] used individual
frames as well as videos to extract geometric features related
to the hand and head motion to identify deceptive behavior.
Caso et al. [62] identified particular hand gestures that can be
related to an act of deception using data collected from simu-
lated interviews including truthful and deceptive responses.
Cohen et al. [63] determined that fewer iconic hand gestures
were a sign of a deceptive narration using data collected from

participants with truthful and deceptive responses. To fur-
ther analyze the characteristics of hand gestures, a taxonomy
of such gestures was developed for multiple applications
such as deception and social behaviour [64]. Hillman et al.
[65] determined that increased speech prompting gestures
were associated with deception while increased rhythmic
pulsing gestures were associated with truthful behavior. Vrij
and Mann analyzed visual and acoustic features on a dataset
of police interviews of murder suspects and reported that
convicted subjects “showed more gaze aversion, had longer
pauses, spoke more slowly and made more non-ah speech
disturbances” when lying than telling the truth [46]. Ten
Brinke et al. manually extracted codings depicting speech,
body language and emotional facial expressions for a collec-
tion of televised footage in which individuals pleading to the
public community for the return of a missing relative [12].
They report informative codings that reflect deception, e.g.,
liars use fewerwords butmore tentativewords.

Recently, features from different modalities were inte-
grated to find a combination of multimodal features with
superior performance [66], [67]. An extensive review of
approaches for evaluating human credibility using physio-
logical, visual, acoustic, and linguistic features is available
in [68]. Burgoon et al. [66] combined verbal and non-verbal
features such as speech act profiling, feature mining, and
kinetic analysis for improved deception detection rates.
Jensen et al. [67] extracted features from acoustic, verbal, and
visual modalities following a multimodal approach. Mihal-
cea and Burzo [69] developed a multimodal deception data-
set composed of linguistic, thermal, and physiological
features. Nunamaker et al. [68] provided a review of
approaches for evaluating human credibility using physio-
logical, visual, acoustic, and linguistic features. A multi-
modal deception dataset consisting of linguistic, thermal,
and physiological features was introduced in [70], which
was then used to develop a multimodal deception detection
system that integrated linguistic, thermal, and physiological
features from human subjects to create a reliable deception
detection system [71], [72].

10 COMPARISON TO STATE-OF-ART

Our work extends the work of P�erez-Rosas et al., where the
real-life trial dataset was first presented, together with a
video-clip level deception detection system [9]. The main
differences with our current work are as follows: i) We con-
duct the deception detection task at the subject-level rather
than at the video-level. Because the outcome of a trial does
not say anything about subjects lying in a particular stage of
the trial, the subject-level classification better matches the
ground-truth labels. To obtain subject-level features, we
experiment with different methods for aggregating video-
level ground-truth and found that feature averaging across
the videos works best. This perspective differentiates our
work from all other work conducted on this data set. ii) As a
novel contribution, we incorporate the acoustic modality
with features designed to detect deception through varia-
tions in pitch and silence duration. Our experimental find-
ings indicate that silence duration tends to slightly decrease
in deceptive speech and that large pitch variations are
strong indicators of deceit. iii) We conducted a linguistic
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analysis on the differences between deceptive and truthful
speech using word-frequency methods. iv) Different from
the earlier work, our evaluations are conducted using 3 rep-
etitions for each test sample in the leave-one-subject-out
cross-validation, to obtain more robust results. Further-
more, we obtained both accuracy and AUC metrics. v)
Finally, our work obtained improved results on the decep-
tion detection task (83.05 percent accuracy and 0.95 AUC
with feature-level fusion and 84.18 percent accuracy and
0.94 AUC with score-level fusion), which are also more reli-
able due to the cross-validation settings.

Among the studies that report results on this database,
Jaiswal et al. used the OpenFace toolkit [73] to extract visual
features and the OpenSmile toolkit [74] to extract acoustic
features which are then fed to an SVM classifier [75]. They
report a 78.95 percent accuracy with feature-level fusion,
after excluding videos (21 of 121) that are either too short or
portray many people such that OpenFace is unable to recog-
nize the subject.

Wu et al. labeled short segments of video clips to train a
micro-expression classifier whose outputs are fed to the
deception classification system [76]. They report that even
though the micro-expression classifier has low performance,
its output probabilities are useful to improve the perfor-
mance of the overall system. They also use GloVe (Global
Vectors for Word Representation) embeddings [77] for the
linguistic representation and MFCC features for the acoustic
modality. They report an AUC score of 0.92 obtained with a
Logistic Regression classifier on a subset of the dataset (104
videos), pruning videos with either signicant scene change
or human editing.

Krishnamurthy et al. used Convolutional Neural Net-
works (CNNs) to learn deep representations of the video
frames and word embeddings corresponding to the manu-
ally annotated transcriptions [78]. These representations are
then combined with automatically extracted audio features
(obtained using the openSMILE library) and manually
annotated visual features in a single hidden layer neural
network. The resulting semi-automatic system achieves an
AUC score of 0.98 and an accuracy of 96.14 percent, thus
obtaining the best results reported so far on this dataset.
However as the authors also acknowledge, there is a possi-
bility that the results may not generalize as well on larger
datasets, due to overfitting or learning the idiosyncrasies of
the small dataset.

Karimi et al. developed a multimodal deception detec-
tion system with automated features [79]. They employ
CNNs followed by a Long-Short Term Memory (LSTM)
model to extract the temporal information in the visual
and vocal input, along with an attention mechanism focus-
ing on the frames that include visual cues of deception.
Their system achieves an accuracy of 84.16 percent for
video-level classification. Venkatesh et al. reported a 97
percent accuracy on the video-level deception detection
using majority voting over the combination of individual
modality classifiers [80]. They used a bag-of-n-grams for
lexical features, Cepstral Coefficients for acoustic features,
and the visual annotations. However, the last two works
appear to have followed a biased experimental protocol:
while doing cross-validation, they do not remove other
videos of the tested subject from the training set. In that

case, the identity of the subject and the labels of the train-
ing videos can be used to label the test video. This is also
warned against in [76].

In summary, existing research on this dataset has
approached the problem at the video-level only, obtaining
classification performances ranging from 78 to 97 percent.
However, the experimental evaluations are not fully com-
patible, it is difficult to compare their results directly. For
instance, in some work, the videos where the subject is not
clearly seen are removed from the dataset; and a subject-
based cross validation is note performed in others.

Our results are also not directly comparable with the
state-of-art since we detect deception at the subject-level
rather than at the video-level. Nonetheless, our best figures
obtained with the semi-automatic system (AUC of 0.9462
obtained with a feature-level combination and an AUC of
0.9323 obtained with a score-level combination of all modal-
ities) are on par with the results of the semi-automatic sys-
tem of [78].

11 CONCLUSION

In this paper, we presented a study of multimodal deception
detection using real-life high-stake occurrences of deceit. We
use a dataset from public real trials to perform both qualita-
tive and quantitative experiments. We built classifiers rely-
ing on the individual or combined sets of verbal and non-
verbal features and showed that a system using score-level
combination can detect deceptive subjects with an accuracy
of 84.18 percent. Our analysis of non-verbal behaviors occur-
ring in deceptive and truthful videos brought insight into the
gestures that play a role in deception. Additional analyses
showed the role played by the various feature sets used in
the experiments.

We also performed a study of the human ability to detect
deception with single or multimodal data streams of real-life
trial data. The study revealed high disagreement and low
deception detection accuracies among human annotators.
Our automatic system using all the modalities outperformed
the average non-expert human performance by more than
6 percent points, and the lowest human annotator’s perfor-
mance bymore than 11 percent points.

In the future, we will work on improving automatic ges-
ture identification and automatic speech transcription, with
the goal of taking steps towards a real-time deception detec-
tion system.
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