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Abstract—The use of thermal images as a non-contact modality
has expanded drastically in recent years, including applications
such as biometrics, detection of specific human behaviors, and
extraction of physiological signals. For instance, using thermal
images to monitor physiological signals was found to provide
better information compared to RGB images, especially in
situations where using physical contact sensors is not a possibility.
In this paper, we present a novel topological approach that can
segment the cheeks and forehead of a human face in a thermal
image, with the key benefit that explicit prior information about
the cheeks and forehead is unneeded. Our approach leverages
topological properties present in a thermal image to provide a
non-rectangular bounding curve for the cheeks and forehead,
which we compare against a dataset of 1000 thermal images that
were manually annotated for this task. By generating a Vietoris-
Rips complex on a thermal image filtered by the Canny edge
detector, our approach can segment the cheeks and forehead
with recall scores as high as 90.4% and 78.4%, respectively.

Index Terms—thermal modality, region of interest segmenta-
tion, topological approach

I. INTRODUCTION

Thermal imaging has become ubiquitous in many fields

of computational science; particularly so in healthcare, en-

gineering, and manufacturing. In applications where humans

play a critical role, understanding the psychological conditions

which they may be exhibiting is invaluable, both for reasons

of safety and tailored functionality. For instance, thermal

faces were analyzed in order to model the alertness levels of

drivers by mapping their facial temperature distribution [1],

[2]. Moreover, thermal images have been used recently for

biometrics. For example, research by Hu et al. [3] and Szankin

et al. [4] explored the use of thermal imgaging for biometric

identification, especially in low-light scenarios. Furthermore,

thermal images have been utilized as a non-contact way of

estimating latent variables that are challenging to predict with

traditional RGB images; in research by Pavlidis et al., thermal

images were used to detect anxiety within individuals [5].

Despite this slew of benefits, it is important to note that

thermal images suffer from key drawbacks compared to RGB

images. This includes the inability to effectively use well-

established techniques for RGB images, such as the Viola-

Jones algorithm [6]. Furthermore, when compared to RGB

data, the annotated thermal data available in the scale and

quality required to implement deep learning models is quite

restricted. The challenges associated with thermal imagery

have compelled us to explore segmentation methods that do

not require explicit prior information about the facial structure.

This research is motivated by the need of identifying optimal

regions of interest (ROIs) in the thermal faces, such as the

cheeks and forehead. In tasks such as detecting heart rates and

respiration rates from thermal images, research by Barbosa et

al. [7] and Elphick et al. [8] showed that it is necessary to

have some form of ROI identification prior to any form of

signal prediction. Other research also indicated the importance

of utilizing specific regions in the thermal faces to model

certain human behaviors, such as sleepiness, discomfort, and

alertness, among others [9]. Moreover, having bounding curves

over bounding boxes that more accurately reflect the shape of

an ROI further increases the quality of information obtained

[10], giving us further reason to present a methodology for

non-rectangular thermal segmentation.

In particular, we make the following contributions: first,

we use a dataset of high-resolution thermal images in order

to segment the cheeks and forehead of the face without

using the visual RGB modality. Secondly, we utilize a novel

topological approach that uses Shi-Tomasi corner detection as

the basis to generate a Vietoris-Rips complex, with the holes

contained in the complex corresponding to non-rectangular

regions inside the thermal faces. Finally, our approach toward

thermal segmentation requires no prior information about the

subject whose face is being segmented, leveraging unsuper-

vised training techniques in conjunction with various computer

vision algorithms in a complete pipeline for segmentation.
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II. RELATED WORK

While there exists several approaches to image segmentation

as discussed in the Survey by Yuheng and Hao [11], these

techniques apply primarily to RGB images. Even in the RGB

image space, face detection is also often a challenging problem

to solve. Despite this, it has attracted a lot of interest in recent

years due to its applications in a variety of disciplines. Face

detection and recognition is challenging under varying light

conditions which could be addressed using thermal cameras,

as the sensitivity to illumination changes is low [12].

More recently, Knapik et al. [13] proposed a new approach

to detect eyes using thermal images. The work by Tashakori

et al. in 2021 [14] used facial thermal imaging in a driver

simulator to predict the drowsiness status of a driver. As

discussed by Mekyska et al. [15], despite the benefits thermal

images could provide, the usage of well established RGB

segmentation algorithms could simply not be used effectively

in thermal images. Abouelenien et al. [16] also showed that

the Viola-Jones algorithm does not perform well at segmenting

thermal regions of interest.

This leads us towards research that approaches human

thermal segmentation by using a mixed modality approach

such as in Coreneau et al. [17] where thermal signatures, 3D

data, and RGB images were used in conjunction for isolating

regions in the face, or in Palmero et al. [18] where they

presented a joint RGB and thermal dataset and approach for

segmentation of the human body. However, these approaches

required the presence of other modalities, primarily RGB,

which meant the need for at least two cameras to monitor a

subject. The use of transfer learning principles in deep learning

is an approach to facial recognition that has been investigated

by Saxena et al. [19], where they explored the potential of

using a pre-trained features from CNN on visible spectrum

face images to perform heterogeneous face recognition in the

thermal domain. Like before, these approaches were limited

by their necessity of requiring either a multimodal dataset or

a dataset of RGB images, not being thermal-only approaches

to this task.

A thermal image’s latent information allows one to detect

emotional state in subjects, providing a means for them to be

used in applications where an RGB camera might not have a

suitable environment to capture information in. The relevance

of segmentation to this was described in a study published by

Or and Duffy [20], where it was found that various parts of the

face correlated differently with stress, with the nose showing

a consistent magnitude of temperature changes under periods

of increased mental load. Despite studies like these providing

credence to the notion that thermal imaging generates data

otherwise unattainable by traditional methods, this has been

afflicted by the the fact that images of this type are of

very low contrast, making the isolation of regions of interest

particularly difficult. Other research employed deep learning

for thermal image segmentation tasks [21], [22], but these

methods suffered from the need of large quantities of data

that are often not available in practice, bringing us to the need

of finding segmentation techniques that can be less dependent

on prior data.

III. METHODOLOGY

Our proposed method builds on the observation that there

exists a difference in the average temperature gradient between

distinct regions of the face. This is particularly apparent when

considering flat regions of the face with little structural vari-

ation, and the edges of facial features with intricate structure,

such the eyes and nose. The former exhibits a relatively

consistent temperature across the entire region, whereas the

latter has low temperature gradient entropy. We aim to take

advantage of this property in order to perform segmentation

of the cheeks and forehead within thermal images of the face.

A. Bag of Visual Words Generation

Fig. 1: Left - Before VHDR, Right - After applying VHDR

We first apply the virtual high dynamic range (VHDR) filter

[23] to the images in our dataset of facial features in order to

enhance the details of the extracted images as seen in Fig.

1. The VHDR filter applies nonlinear tone adjustment curves

to bring out a wider dynamic range in an image to increase

the likelihood of identifying features that would otherwise be

imperceptible. Following this, we collect the descriptor objects

which result from applying dense Scale Invariant Feature

Transform into one set [24]. Given that some descriptors

are representative of the same feature and thus could result

in redundant vector representations, we then reduce the size

of the descriptor set through K-means clustering. This com-

presses the dataset by reducing redundancy without removing

important features from our bag-of-visual-words.

B. Feature Detection

Segmentation of the face is achieved utilizing Otsu’s thresh-

olding on the non-VHDR images, as the thermal image back-

ground is distinctively lower in temperature than the subject.

Following this, we apply a floodfill algorithm to close any gaps

in the binarized image, a representative example of which is

seen in Fig. 2.

Next, we estimate the centerpoint of the binarized image;

this is computed as the center of mass of the white pixels in the

image. After this, we mark the left, right, and top boundaries

of the set of white pixels. We interpolate a bottom boundary

by measuring the y-distance between the top boundary and the

centerpoint, then draw an equidistant boundary underneath.

Once again, we then apply the VHDR filter to the entire

(original) image. With our external boundaries established, we

can now extract our features of interest. We generate a set of

SIFT descriptors for a pixel lattice of the same density over
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(a) Original Thermal Image (b) Otsu’s Thresholding and
Floodfill applied

Fig. 2: Example for Face Isolation using Otsu’s Thresholding

our test image. We can then generate a normalized colormap

as seen in Fig. 3. corresponding to the minimum Euclidean

distance between a descriptor f(i, j) and the vectors in ΛK .

Following this, we perform salient point clustering by

picking the centroid of the largest clusters as the location of

our features. In the case of the eyes, the centers of the two

largest clusters are selected, whereas we only select the center

of the largest cluster when searching for the nose.

After we locate the eyes and nose in the image, we utilize

these to segment the face into three bounding boxes which

are meant to separate the left and right cheeks, as well as the

forehead as seen in Fig. 5. We then apply our algorithm to

each of these three sub-regions individually.

C. Segmentation of Cheeks and Forehead

To the original thermal image we apply a Canny filter in

order to get the relevant edges of the face. The two threshold

parameters associated with the Canny algorithm are deter-

mined experimentally, with the goal of generating a binary

image Ic which identifies the large temperature gradients on

the edges of facial features, but ignores the subtle ones present

in the skin as seen in Fig. 3.

Fig. 3: Left: Example of Generated Colormap using SIFT.

Right: Example of image Ic generated using properly tuned

Canny settings

Once the optimal Canny settings are found, we formulate

the task of segmenting the cheeks and forehead as a problem

of estimating the boundaries of three large regions in the face

that contain only zero-valued pixels in the Canny image Ic. For

this we use tools meant for triangulating topological spaces.

We begin by applying the Shi-Tomasi (ST) corner detection

algorithm [25]. Given the ST point cloud V , we can use the

Vietoris-Rips complex generation algorithm [26] to generate

a simplicial complex which is defined in Algorithm 1. Here,

r is the radius used to compute the Vietoris-Rips complex,

which determines the formation of lines between any two

given points in the point cloud by applying an upper limit

on the line length. Fig. 4 shows the effect of varying r for a

sample set of points on the produced Vietoris-Rips complex.

Algorithm 1: Vietoris-Rips Complex Generation

Data: V, r ∈ N

Result: K
K ← ∅;

for (v1, v2) ∈ V × V do
if ||v1 − v2|| < r then
K ← K ∪ {(v1, v2)}

Fig. 4: Generation of Closed Partition on varying r in the

Vietoris-Rips Complex Generation Algorithm

Once these points are found, we apply a heuristic to further

improve our process: In the four corners of the bounding

box surrounding the face, there are small black regions which

intersect with the background; the pixels contained in these are

exactly those inside of the bounding box described in section

B6 not contained in the segmented face computed in section

B1. We tile these regions with equidistant points so that the

algorithm does not mistake these as one of the large contours.

Fig. 5: Left: Bounding Boxes and Point Cloud V Generated

From Canny Image Ic Right: Contour Regions mapped from

Generated Closed Partitions from V

Finally, using the generated set of closed partitions, we

apply a contour finding algorithm to detect the contours for

the three regions as seen in Fig. 5.

IV. EXPERIMENTAL SETUP

For our experiments, we sampled thermal images collected

from across 45 subjects of varying ethnicities in a simulated

setting. The dataset includes 30 males and 15 females ranging

in age from 20 to 33 years old. All the thermal images were

captured frames from a recording of the subject’s face taken at

100 frames per second using a FLIR SC6700 thermal camera

with a resolution of 640x512 pixels and 7.2M electrons.

For experimentation, we sampled 1000 frames randomly

across the whole dataset, excluding those used for building
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Fig. 6: Examples of Manually Annotated Images

the bag of visual words. We then used Supervisely [27], an

image annotation tool to manually build a ground truth dataset

of the cheeks and forehead across all the images. Fig. 6 shows

some examples of the annotations on an image.

We have optimized our experiments for the following hy-

perparameters: Cluster Count, which is the total number of

individual clusters during the process of K-means clustering.

Point Count, which is the total number of points contained in

all clusters. Cluster Point Distance, which is the maximum

distance a point contained in a particular cluster may be

from the cluster’s center. Vietoris-Rips (VR) Radius, which

is the set radius r used when computing the Vietoris-Rips

complex. Canny Low Threshold, which is the lower threshold

used to prune edges in the Canny edge detector. Canny High
Threshold, or the upper threshold used to prune edges in the

Canny Edge detector.

V. RESULTS & ANALYSIS

Fig. 7: Example of Bounding Curves for a Thermal Image

Fig. 7 represents an example of how our approach generates

a bounding curve, shown in red, with the annotated curve

shown in green. In results that we discuss further in Table

III below, we see that the cheeks reaches a recall score of

90.4% while the cheeks reaches a precision of 71.6%.

We first place our focus on the effect the heuristic parame-

ters have on our results, looking at the effect of each parameter

on the algorithm’s performance by taking the mean recall

across each parameter value as seen in Table I. It appears that

the heuristic parameters alone are not a significant contributing

factor to the performance. However, this ignores the effect of

the parameters on each other as dependent variables, which we

analyze further in Table III. We also observe that the Canny

threshold values have the largest effect on the performance of

the algorithm.

To understand the effects of the thresholding parameters on

performance, we consider Table II, which contains the best

TABLE I: Average Recall Seen across Cluster Count, Point

Count and Distance Parameters

Parameter Name
Parameter

Value
Mean Recall -

Cheeks
Mean Recall -

Forehead

Cluster Count
10 0.756 0.603
20 0.748 0.609

Point Count
2500 0.751 0.608
3000 0.752 0.604

Cluster Point
Distance

35 0.752 0.606
55 0.752 0.606

Vietoris-Rips
Radius

25 0.756 0.624
33 0.748 0.588

Canny
Low

Threshold

20 0.754 0.614
40 0.809 0.67
50 0.801 0.66

Canny
High

Threshold

70 0.867 0.726
100 0.824 0.71
150 0.688 0.508

TABLE II: Highest Recall Seen across each Region when

varying the Initial Radius and Upper Canny values

Canny Low
Threshold

Canny High
Threshold

Max Recall
- Cheeks

Max Recall
- Forehead

20
70 0.893 0.776
100 0.878 0.734
150 0.721 0.558

40
70 0.911 0.794
100 0.878 0.75
150 0.726 0.511

50
70 0.912 0.783
100 0.875 0.744
150 0.733 0.516

computed recall for all combinations of Canny parameters

that were experimented with. We see that the best recall

values for the lower and upper thresholds were 50 and 70

respectively for the cheeks region with a score of 0.912, and

40 and 70 respectively for the forehead region with a score of

0.794. The values used in the hysteresis thresholding procedure

are following non-maximum suppression filtering within the

Canny edge detector.

We find that the measured precision for the cheeks tends to

be lower than that of the forehead as seen in Table III. This is

because in many subjects, a strong edge is not produced for

the jawline, causing the boundaries for the cheeks to extend

below the mouth as seen in Fig. 7. However, compared to

a rectangular bounding box for identifying a region which

will also inadvertently include the background, the algorithm’s

bounding curve is always within the subject’s face. Across

all 1000 images we used, 99.3% of all the pixels contained

by the estimated bounding curve lies entirely within the

subject’s face. The ability to draw non-rectangular regions

greatly reduces the number of wasted background pixels which

could be useful in different scenarios, such as vision models

where better region estimation will allow for a model to train

solely on the temperature gradients present on the face rather

than the sharp gradient between the face and the background.

Finally, we take a look at an effect of the other non-Canny

parameters in an optimal Canny threshold setting. Table III has

the highest recalls seen for the cheeks and forehead as well

as the corresponding precision per region. Fixing the Canny
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TABLE III: Highest Recall seen when using 40 as the Canny low threshold and 70 as the Canny high threshold

Cluster
Count

Point
Count

Cluster Point
Distance

Vietoris-Rips
Radius

Recall -
Cheeks

Recall -
Forehead

Precision -
Cheeks

Precision -
Forehead

Cheeks 10 3000 35 33 0.904 0.752 0.454 0.716
Forehead 20 2500 35 25 0.88 0.794 0.376 0.585

values shows that the cluster point and VR radius parameters

affect the performance of a region, with the cheeks preferring a

lower cluster count and higher VR radius, and the converse for

the forehead. This might also open up the potential of future

work where applying different parameters to the images based

on the region of interest could allow for further improvements

of thermal region detection.

VI. CONCLUSION

With the expansion of the usage of thermal imaging for a

variety of purposes, the need arises for methods that go beyond

detecting thermal faces to approaches that reliably segment

thermal ROIs in the faces. In this paper, we introduced a

novel pipeline that showed to be effective in isolating specific

ROIs in the thermal faces. We built a thermal image dataset

in order to develop a novel topological approach towards non-

rectangular segmentation of the cheeks and forehead from

a thermal image of a subject. By taking advantage of the

temperature gradients present on the face, we could employ

topological algorithms that allowed for us to design an ap-

proach that requires no prior knowledge of the subject before-

hand. Furthermore, our approach allowed us to generate non-

rectangular bounding curves to segment regions that exclude

the background entirely. The proposed thermal segmentation

pipeline used Canny edge detection and the Shi-Tomasi cor-

ner detection algorithm, followed by applying the Vietoris-

Rips complex generation algorithm that could generate closed

regions around the cheeks and forehead. Finally, using our

dataset of 1000 thermal images, our algorithm obtained recall

figures as high as 90.4% for the cheeks and 79.4% for the

forehead, indicating the effectiveness of our proposed pipeline

and contributing to an area of research that still has not been

extensively explored.
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