
Learning Progression-based Automated Scoring of Visual
Models

Ari Sagherian∗, Suhasini Kalaiah Lingaiah∗, Mohamed Abouelenien∗, Chee Wee Leong¶, Lei Liu¶,
Mengxuan Zhao¶, Blake Lafuente∗, Shu-Kang Chen¶, Yi Qi¶
∗Computer and Information Science, University of Michigan-Dearborn

Dearborn, Michigan, USA
¶Research & Development, Educational Testing Service (ETS)

Princeton, New Jersey, USA
<asagheri,suhasikl,zmohamed,balaf>@umich.edu

<cleong,lliu001,mzhao,tschen,yqi>@ets.org

ABSTRACT
Visual models are defined as drawings created by students to

illustrate their understanding of an observed scientific phenome-
non. Along with the corresponding textual answers describing the
phenomenon, these multimodal responses serve as rich vehicles of
information for conducting assessment on students in their grasp
of the underlying scientific concept. Though effective, manual scor-
ing of these responses are both laborious and expensive. In our
work, we apply a user interface tool for students to construct mul-
timodal responses to scientific prompts, and propose an automated
approach that relies on image processing to classify shapes in visual
models, extract relevant features, and, ultimately, assign a learning
progression score to each model. This effort is the first in a series
of planned approaches targeted at utilizing multimodal evidence to
evaluate, scaffold and guide students in their learning pathways in
science education.
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1 INTRODUCTION
In the United States, there has been an increased emphasis on

Science, Technology, Engineering, and Mathematics (STEM) educa-
tion, of which an important subtask is the assessment of students’
mastery of science competencies. Assessment experts have been
researching on innovative measures that could potentially evaluate
the multiple dimensions of science competencies, such as scientific
concepts and practices [10]. One assessment approach, Learning
progressions (LPs), was developed to facilitate the assessment of
students’ progress in science learning [8, 21]. These LPs facilitate
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the aggregation of scores of each progress variables, where each
focuses on a specific facet of the overarching concept or practice.

Relatedly, the Next Generation Science Standards (NGSS) des-
ignated constructing models as an essential practice as learning
targets for K-12 science learning [9]. By definition, visual models
are drawings created to illustrate understanding of an observed
scientific phenomenon or mechanisms that explains a phenomenon,
e.g., ocean water modeling task in Figure 2. These visual models
help capture alternative evidence about students’ understanding of
science in combination with their corresponding textual responses
in a multimodal response. LPs were developed and could be used
to interpret the meaning of student-generated visual models and
to evaluate their understanding of the structure and properties
of Matter [17, 29]. In addition, these visual models also introduce
other elements characterized by artistic creativity and complexity.
Consequently, the overarching motivation behind this work is to
disentangle the interaction between the scientific modeling skills
and artistic skills of representing real objects to provide a fair and
valid way to assess understanding of scientific concepts.

Automated scoring of these visual models and their accompa-
nying textual answers is a worthy pursuit since manual scoring
is both laborious and expensive. In this paper, we seek to achieve
the two primary goals of (1) creating accurate classifiers of objects
and extracting relevant features from visual models rendered as
unlabeled image, and, (2) conducting assessment of the level of
mastery of students of a targeted, scientific concept, i.e., Matter,
using the features of the classified objects. The paper is organized as
follows: We first introduced important datasets used in our studies
and highlight their characteristics. Next, we performed a compara-
tive evaluation between supervised and unsupervised approaches
used to extract features from the visual models and classify objects.
Finally, an additional level of features was aggregated from the pre-
vious layer of feature extraction and shape classification, and used
to assign a learning progression score to each visual model. Note
that this paper scopes a first-cut, "depth-first" approach to solving a
multimodal problem first using image processing prior to its combi-
nation with natural language processing technique at a later point.
To our knowledge, this represents the first fully-automated pipeline
for assessment of visual models in an end-to-end manner.

2 RELATEDWORK
The conceptual foundation for automated scoring in the litera-

ture was first established by Liu et al. in their research on grading
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scientific visual models [24]. They administered questions to stu-
dents who, in response, created visual models to illustrate their
understanding of the targeted scientific concept, e.g., Matter and
related phenomenon. These models were then evaluated by four
progress variables as part of the Learning Progression (LP) frame-
work, with levels ranging from 1 (lowest) to 5 (highest) on a Likert
scale [8]. Each visual model consisted of multiple 2-D shapes ar-
ranged spatially in the drawing to illustrate understanding of the
targeted scientific concept phenomenon, e.g., water particles in
ocean water. Each of the four progress variables, namely Scale,
Behavior, Material Identity, and Distribution, had their own sub-
progression of 5 levels, with the amalgam of these resulting in the
final score (“LP” score).

In order to automate the scoring of visual models, object classi-
fication and feature extraction techniques are necessary. Various
strands of work in image processing provide a wide array of candi-
date techniques that can be used. Many begin with pre-processing
steps to improve results. Image segmentation is one such exam-
ple which can be divided into four categories, as described in [14],
with thresholding techniques being the most relevant to this study.
Threshold segmentation is based on the idea that pixels in an image
within a certain range of color values are part of the same class
[22, 31], thus improving the signal to noise ratio between objects.

After preparing the data, many studies utilized contour or edge
detection as the next step in the pipeline of object recognition. The
most commonly used include the Suzuki [40] and Seo [38] contour
detectors or the Sobel [39], Roberts [35], Prewitt [34], and Canny
[7] edge detectors. Each of these possesses its own benefits when
applied to a variety of object recognition tasks as described in [1–
3, 12, 23, 27, 28, 30, 32]. A prominent example of a classification tool
following the usage of contour detection is Hu Moments. These
are seven values that describe an object in a scale, rotation, and
translation invariant manner [16, 18]. These values can then be
used as features to compare and recognize objects [15, 41, 42].

An additional host of tools after isolating the objects are super-
vised machine learning approaches. For example, common feature
extractors for object recognition such as the Scale Invariant Feature
Transform (SIFT), Speeded up Robust Feature (SURF), and the Ori-
ented FAST and Rotated BRIEF (ORB) algorithms [4, 25, 36] can be
implemented. Then, these extracted features can be fed into a super-
vised classifier, such as the k-Nearest Neighbors (KNN) and Support
Vector Machine (SVM) algorithms [5, 6, 11]. When comparing the
three feature extractors with a KNN classifier, it was concluded in
[19] that SIFT provided the best overall accuracy but took signifi-
cantly longer thanORB, leaving the SURF approachwith amoderate
performance. Therefore, if speed is essential, then ORB is the ideal
candidate and, if not, then SIFT is the ideal choice. Comparing
classifiers in the context of object classification, [20] determined
that SVM’s tend to outperform the KNN classifier. The advent of
machine learning relies on large datasets but, once possessed, has
unlocked the ability to improve the accuracy of classification and
holds the potential for future improvement.

3 ASSESSMENT PROTOTYPE
The assessment prototype was developed to elicit sufficient evi-

dence to locate student response along learning pathways defined

in the LP. Specifically, this assessment prototype was designed to
measure the LP levels 1-4. As in most LPs, the higher anchor is often
the ultimate learning goal, and this rationale will be covered later
in the next section. The assessment prototype is a scenario-based
task beginning with a driving question—"How can you get pure
water out of ocean water?”—to set the ultimate goal for the whole
task. In addition, the assessment prototype included tools and rep-
resentations similar to scientists tend to use, including simulations
and a modeling tool. Throughout the task, students engaged in
interactive simulations that allow students to design multiple trials
of experiments to test predictions and explain why they think these
experiments can test the provided prediction. Item formats include
multiple choice, constructed response, and modeling items.

For the purpose of this paper, our analyses focused on student
drawings from the modeling items. In this assessment prototype,
modeling items involve the use of a computer-based drawing tool in
Figure 1, in which students used a free drawing tool or select from
a pool of predefined objects, including abstract representations
(e.g., circle, square, or triangle) and concrete representations that
include common misconceptions that students hold (e.g., fish and
water drops are the basic units of ocean water composition) to
allow students to express their idea of structure of matter. The
common misconception objects were collected from a cognitive lab
study. The drawing tool also allows students to change the size or
color of selected objects, add arrows to represent motion, and label
objects. Finally, the drawing tools include two modes of inputs,
namely images and text, as research shows that it is necessary to
ask students to provide textual description of their models to avoid
potential misinterpretation of student drawings [37].

The modeling tool was embedded at several places in the task
so that students can construct, use, evaluate and revise their mod-
els. At the beginning of the task, students were informed of the
importance of modeling in learning about science and provided
with an example of modeling to demonstrate how scientists used
models to refine theories. Then, students were asked to use the
modeling tool to draw a model of pure water particle model and
ocean water particle model. Then they were asked to evaluate one
classmate’s model based on the evaluation criteria provided. Three
simulation-based activities (i.e. filtering activity, evaporation activ-
ity, and condensation activity) were designed to break down the
big problem into smaller ones and to guide students to reach the
solution of the driving question—"How can you get pure water out
of ocean water?” At the end of each activity, students were asked
to reflect on the activity and use the modeling tool to draw a model
at the particle level to explain what happened (e.g., why pure water
and ocean water had different densities, how water evaporate and
condense?). In addition, students were also prompted to revisit their
initial models of pure water and ocean water and revise them if
needed. Finally, at the end of the task, the students were asked to
draw a model of their solution of purifying ocean water.

4 DATASET
Three datasets are used in this paper and comprises multiple

scientific visual models, provided by the ETS organization. The
first is the Ocean Water Modeling Item dataset that consists of
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Figure 1: User Interface screenshot for a sample visual mod-
eling task

Figure 2: Examples from the Ocean Water dataset.

144 visual models. In this dataset, students illustrate their under-
standing of composition particles in ocean water through drawing
the smallest unit of matter included in a water droplet by spatial
placement of provided micro-objects (triangles, squares, rectangles,
circles, arrows) or macro-objects (fish, seaweed, water droplets, etc.)
on a digital canvas. According to a previously developed LP, a low
level understanding tends to include more macro-objects, while
more sophisticated understanding is exhibited through drawings
of micro-objects and associated behaviors of those objects at the
particle level. Students were instructed to select any number and
type of micro-objects and macro-objects to create a visual model
to illustrate their understanding of the targeted phenomenon. This
dataset has human annotations for each of the individual shapes
comprising the models, as well as the final “LP” score for each
model. Human annotations are used as the ground-truth labels for
comparing both supervised and unsupervised approaches to object
detection. The annotations ranged from LP score 1-4. Examples of
visual models from the Ocean Water dataset can be seen in Figure
2.

The second dataset, Synthesized Ocean Water, consists of 30
visual models that are artificially synthesized and correspond to
a mastery of the targeted scientific concept at the highest under-
standing level i.e. LP 4, as measured by the four progressive vari-
ables, i.e., Scale, Behavior, Material Identity, and Distribution. For a
given visual model, the scale dimension measures understanding
of composition of Matter beginning with the smallest units, e.g.,
nanoscopic particles. The material identity dimension examines
the anticipated number/identity of particles present. The behavior

Table 1: Mapping between Learning Progression (LP) levels
to four dimensional sub-progressions. For a given LP level,
indication of a ‘X’ means the minimum level that must be
mastered in that sub-progression dimension. For example, a
student with a visual model worthy of a LP-4 score must ex-
hibit understanding that commensurate with at least the fol-
lowing sub-progression level scores: Scale (4), Material Iden-
tity (2), Behavior (3), Distribution (2)

S MI B D
1 2 3 4 1 2 3 1 2 3 4 1 2 3

LP-1 X X X X X X
LP-2 X X X X X X
LP-3 X X X X X X X
LP-4 X X X X X X X

dimension examines if/how particle movement is represented. Fi-
nally, the distribution dimension examines positions of individual
particles and space between them in a given Matter state. Each
dimension has its own sub-progression levels, starting with the
most basic at level 1. Overall, in order to reach a given level of the
LP, the student must demonstrate a minimum level of thinking in
each of the four dimensions, and that minimum level may vary
with the dimension. For instance, the progression from LP-3 to LP-4
requires a mastery of level 4 in scale dimension and a minimum
of level 3 in behavior dimension, as illustrated in Table 1. Only
annotations for LP scores, not individual shapes within each visual
model, are available for this dataset.

Finally, the Two Can dataset consists of 195 visual models rang-
ing from LP levels 1-3, and has annotations for LP score of the
models only, similar to the Synthesized Ocean Water dataset. Here,
students illustrate their understanding of the water condensation
phenomenon through the use of micro-objects and free-hand draw-
ing of two cans, one warm and one cold. Students with a deep
understanding of the phenomenon are expected to draw a visual
model with condensation effect on the surface of the cold can and
not the warm can. Furthermore, the Two Can dataset contains
hand-drawn objects and words, which poses additional challenge
for image processing. Examples of the Synthesized Ocean Water
and the Two Can datasets are shown in Figures 3 and 4 respectively.

With both shape and LP score annotations, the 144-image Ocean
Water dataset can therefore be used to evaluate our shape classifi-
cation algorithms and frameworks. However, it lacks visual models
annotated at the LP-4 level. Hence, it can be combined with the
Synthesized Ocean Water dataset to form a 174-image dataset that
can be used to evaluate our ability to predict the LP score of each
visual model in a cross-validation setting. The Ocean Water and
Two Can datasets can also be used to evaluate our ability to predict
the LP score of a visual model in an out-of-domain setting, since
these drawings represent different phenomenon, i.e., water and salt
particle movement in a liquid state versus water particle movement
in a gaseous/condensation state.

As previously noted, except for the Synthesized Ocean Water
dataset, there is an supplemental textual answer provided by the
student accompanying each visual model, with varying degrees in
the text length and focus of the description, e.g., “Our model shows
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Figure 3: Examples of visual models from the Synthesized
Ocean Water dataset.

Figure 4: Examples from the Two Can dataset.

the smallest unit of water, under a microscope. The arrows show the
way the water is going.”. This textual modality presents additional
evidence for assessment of understanding by students but exceeds
the scope of this paper, and would be addressed in ensuing work.

5 METHODOLOGY
The goal of this study is to accurately recognize various shapes

in 2D visual models and extrapolate LP scores from the classified
objects and their features. In order to achieve this goal, we next
describe the processing pipeline of our methodology. Our approach
can be divided into two main stages. The first involves process-
ing the raw visual models using a series of image processing and
segmentation techniques, as well as unsupervised and supervised
approaches to reliably detect the drawn objects in each model. The
second stage is concerned with aggregating the results of the first
stage into higher level features that model the mastery of the tar-
geted scientific concept through visual drawings via a Learning
Progression (LP) score.

5.1 Image Preprocessing
To begin the pipeline of processing a visual model, image pro-

cessing techniques are implemented. One such technique is color
segmentation which refines the colors so that the contrast between
segments is improved. The color segmentation is applied identi-
cally to all objects in the visual models. The first step in segmenting
the images for this study was to count the number of pixels with
the same color. A filter was then applied to remove all colors that
appeared less than 200 times per image in order to reduce noise.
Having filtered out low frequency colors, the next step was to join
the pixels that were within values of 40 in intensity to specify a
limited list of colors and increase the contrast. This number was
determined experimentally. Having segmented the images by color,
the final steps of image preprocessing were converting the image
to grayscale, followed by inverse-binarization of the image.

5.2 Feature Extraction via Contour Detection
and Shape Approximation

The next step in the pipeline was to further process the images
with contour detection to extract features. The Suzuki algorithm
was implemented, which took a binarized image as an input and

Figure 5: Contour and bounding shape examples for arrows.

then listed all the closed-loop contours. Then the approximate
polygon of each closed contour was determined using the Ramer-
Douglas-Peucker (RDP) [13] algorithm. The benefit of this approxi-
mation is that the number of vertices in a contour can be determined,
a useful feature which will be exploited in the following sections.

We illustrate the process described above through awalk-through
example focusing on a specific object, i.e. arrow. In this case, two
bounding boxes and an enclosing ellipse were automatically created
around the contour (top left), as shown in Figure 5. One bounding
box (bottom right) has sides parallel to the frame of the image,
providing the center coordinates of the object which was used for
the final orientation calculation. Another box (top right) is a min-
imum area bounding rectangle which encapsulated the contour
with the smallest possible rectangle, providing the height, width,
coordinates, and rotation of the object in a range of 0 to 90 de-
grees relative to the horizontal. The bounding ellipse (bottom left)
provides further rotational information, calculating the angle from
0-180 degrees relative to the vertical.

5.3 Unsupervised Methods
5.3.1 Rules-based Shape Classification. To classify the detected ob-
jects as different shapes, we experimented with several approaches.
The first fully unsupervised approaches (i.e. without any training
inputs) is a Rules-based classifier that we designed, which used
the number of vertices returned by the approximate polygon and
the height, width, and rotation returned from the bounding boxes.
The rest of this section lists the shape, and the rules we used to
classify them: Triangle: the number of vertices equals 3 or 5, the
height cannot be equal to the width, and the height is within 10
pixels of the width. These values, including 5 vertices, although
not typical of triangles, were experimentally determined due to
the pre-processing steps. Diamond: the number of vertices equals
4, the rotation of the bounding box is between 40 and 50 degrees,
and the height of the box is within 2 pixels of the width. Square:
the number of vertices equals 4, the shape is not a diamond, and
the height is within 2 pixels of the width. Circle: the number of
vertices is greater than 6 and the height is within 1 pixel of the
width. Arrow: the number of vertices is between 7 and 10, color
is black (for our datasets), and the height is not equal to the width.
Other: other objects that do not satisfy the above rules.

5.3.2 Arrow Orientation. Another novel contribution of this work
is a new arrows orientation detector. Students were instructed to
use arrows to indicate water particles motion in terms of both
their direction and speed. Hence, a visual model with appropriately
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Figure 6: Adjusted arrow orientation using 3-degree margin
of error

drawn arrow directions and length would represent a deep under-
standing of the targeted scientific phenomenon at the particulate
level compared to a visual model with macroscopic depiction (e.g.
fishes with seaweed). Hence, the ability to detect the direction of
the arrows drawn, as well as the length of the arrows (which corre-
sponds to the speed of the particle to which the arrow is attached)
was an important feature engineering step. To our knowledge, an
effective method for determining arrows orientation in the context
of this study does not exist. The first step in our approach for cal-
culating the orientation was to take the contour of each candidate
arrow in an image and fit a Rectangular Bounding Box, a Minimum
Area Bounding Box, and a Minimum Area Ellipse around it. Each
of these had center coordinates that can slightly vary based on the
angle of the arrow, so the average of all three was calculated and
used as the geometric center of the arrow. Then, the centroid of
the arrow was derived to determine the coordinates of the arrow’s
center of mass.

Equipped with the geometric center and the centroid, the next
step was to use both of these to determine the direction of the ar-
row’s head. The principle guiding this approach is that the centroid
(relative to the geometric center) was shifted towards the arrow’s
head, analogous to a see-saw tilting in the heavier direction. Using
this insight, another Rules-based approach was created to decide
the orientation of each arrow.

Initially, the angle of each arrow was calculated between 0-180
degrees relative to the vertical axis derived from the Minimum Area
Ellipse. For consistency, this angle will be called the ellipse angle
for the remainder of this section. In this scenario, an arrow facing
North and an arrow facing South were both rotated zero degrees.
Three sets of rules were created to adjust for this, which determined
the angle for arrows in 90 degree intervals facing North, South, East,
and West based on a three-degree margin of error from the ellipse
angle. An example of the implementation of these rules can be
seen in Figure 6. We applied two other sets of rules to account for
instances, where the centroid and geometric center were within a
range of one pixel and when the centroid was west of the geometric
center. The arrows orientation was one of the important attributes
used to build the second-level features that were used to determine
the learning progression score, as detailed later.

5.4 Supervised Methods
5.4.1 Machine Learning. In order to evaluate the performance of
a supervised approach, we extracted features which are fed into a
shape classifier. Since the amount of labeled, ground-truth data is
limited for this project, Decision Tree is the only classifier that is
currently explored due to its established statistical properties. We

intend to use this as a basis for future work on classifying shapes
using other supervised learners as more labeled data is collected.

The Decision Tree classifier operates by taking feature vectors
extracted from the visual models along with the corresponding clas-
sification labels as the training inputs. It then receives the testing
feature vectors, which have identical attributes but with different
values. The features from the training inputs are then ranked in
terms of their information gain, and used to predict the classifi-
cation labels in the test set. For purposes of this paper, the final
classifications will be the object type, which are extracted from
the same templates used for Hu Moments and Area Ratios, are as
follows:

(1) Number of edges in the contour’s approximate polygon
(2) Ratio of bounding box area to contour area
(3) Ratio of minimum area bounding box to contour area
(4) Ratio of bounding ellipse area to contour area
(5) Minimum area bounding box rotation
(6) Bounding ellipse rotation
(7) Distance between the geometric center and the centroid
Consequently, these features were used to create a single feature

vector for each shape in each visual model, which was used along
with its correct label to train the Decision Tree classifier in a 5-fold
cross validation scheme. The metric used to evaluate the results is
the classification accuracy. The accuracy of this approach accounted
also for shapes that missed detection in the first step.

5.4.2 HuMoment Classification. WhileHumonents and the follow-
ing Area Ratio approaches, by themselves, might not be considered
fully supervised, they are listed under supervised approaches, as
we added a step where pre-selected templates were used to deter-
mine the type of the target shape in the images. However, very few
templates were used for these approaches. Hu Moments are seven
values that describe a shape in a scale, rotation, translation, and
reflection invariant manner.

By undergoing various linear algebraic transformations, these in-
variant properties were achieved. The Hu moments were calculated
for the outermost contour in a template image (as each template
represented a single shape) and for each contour in the visual mod-
els. To determine which shape the detected contour in the visual
model belonged to, distance measures were used between the Hu
moments of the visual model contour and all the template images
contours.

5.4.3 Area Ratio Classification. The implementation of three Area
Ratios is another approach we designed to classify the detected
objects. The ones used in this project are the ratios between the
detected contour’s area and the area of three enclosing shapes,
namely the Bounding Box, Minimum Area Bounding Box, and
Minimum Area Ellipse, as shown earlier in Figure 5.

Dividing the areas of these three bounding shapes by the tar-
get contour area generated three Area Ratios. This process was
repeated also for each template, resulting in target and template
contour Area Ratios. The respective ratios of the templates and
detected contours were then compared using the distance operator
shown in Equation 1. This distance measure represented the ab-
solute value of the difference between the template Area Ratio (p)
and the shape’s contour Area Ratio (q). Similar to Hu Moments, the
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Figure 7: Flow Chart of the cascaded voting system

smaller the difference is, the higher the probability of a match. As
the distance measure for each of the three area ratios was conducted
independently, it was possible for all three to produce differing re-
sults. In this case, the Minimum Area Bounding ratio was used as
it was experimentally determined to be the most robust.

D = |p − q | (1)

5.5 Cascaded Voting System
To reach a reliable classification of a shape, we designed a novel

cascaded voting system using four main stages to integrate three
of the aforementioned methods, namely, Area Ratios, Hu Moments,
and Rules-based methods. These methods were selected as they are
either completely unsupervised or require very few templates or
labeled shapes.

Moreover, they can be easily expanded to use with any dataset.
Three of the four stages resulted in a vote for each of the Area
Ratios, Hu Moments, and Rules-based methods, and the last stage
integrated their vote to result in a final shape classification.

At the first stage, each of the three Area Ratios for the target
object was matched with the most similar template. The final vote
of each Area Ratio was determined using a majority voting system
for the top 1, 3, and 5 results. For example, the list of matched
templates could be [Square, Circle, Circle, Square, Square]. For the
top 1 voting schema, the result will be Square since the most similar
match is a Square. For the top 3 schema, the result will be Circle as
2/3 of the top results are Circles. For the top 5 schema, the result will
be Square, following the same approach. We used all three schemata
and employed an additional layer of majority voting among the
three for a more reliable vote for each Area Ratio. For the previous
example, the decision using majority voting on all three voting
schemata for a given Area Ratio should be a Square. Lastly, the final

vote of all three Area Ratios was also determined using a majority
voting scheme of their three individual votes.

Similarly, the three votes obtained using three distance measures
with Hu moments were integrated with a majority voting scheme,
resulting in one final HuMoment vote. The next level of the cascade
integrated the Hu Moment and Area Ratio votes with the Rules-
based vote using majority voting once again. For instance, if the
Rules-based and theHuMoment classificationsmatch, then the final
classification of the object is whichever shape these two methods
predicted. A diagram of the cascaded voting system is illustrated in
Figure 7.

5.6 Scoring of Visual Models
The second stage of the pipeline is concerned with the assess-

ment of the visual models. The features and classifications from the
prior stage were aggregated to a second level of 10 features that
are aligned with the constructs of mastery of the targeted scientific
concept, as shown in Table 2.

Table 2: Descriptions of features for scoring visual models

Features Description
Counting-based

Micro-object types Number of each type of micro-object
Macro-object types Number of each type of macro-object
Micro-object color types Number of types of micro-object colors
EIC deviation EIC minus count of each type of

micro-object
Arrows Count of arrows
Arrow lengths Mean length of arrows
Arrow randomness Variance of arrow orientations

Spatial-based
Spatial-based k-NN = 3 Mean distance to 3 nearest micro-objects
k-NN = 10 Mean distance to 10 nearest micro-objects
Dispersion Mean normalized spread of micro-objects

The final step in the second stage is using these aggregated fea-
tures to predict the Learning Progression (LP) score. For this study,
the LP scores ranged from 1 (lowest) to 4 (highest). The LP used for
this study consisted of four progress variables, each with their own
sub-progressions as displayed in Table 1, where the combination of
these sub-progression scores mapped to the overall LP score. The
progress variables are Scale (S), Material Identity (MI), Behavior
(B), and Distribution (D). The Scale portrays the composition of
Matter based on the micro and macro objects. The Material Identity
portrays the number and identity of the objects used in the visual
model. The Behavior dimension measures the movement of the
objects relative to each other. Finally, the Distribution dimension
examines the spatial locations and clustering of objects.

The score prediction process utilized eight regressors and classi-
fiers known for their matured statistical properties and explainable
outputs, which are recommended for educational assessment tasks,
as shown in the list below. We employed these various learners
in the SciKit-Learn machine learning framework ([33]) via SKLL
([26]) for experimentation. The results of these learners were tuned
to a Quadratic Weighted Kappa (QWK) score which compares the
predicted results to human-annotated LP scores. The range of QWK
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scores is from 0 to 1, where 0 indicates a completely random pre-
diction and a score of 1 represents a complete agreement between
predicted and ground-truth labels.

5.7 Generalizability and Conceptual
Understanding

The classification of shapes and extraction of their corresponding
features with this system are not limited to the Ocean Water and
Two Can datasets. Due to the broad use of micro-objects including
arrows, squares, etc., the current system can also be generalized
to other datasets for predicting LP scores. The generalizability of
this system for other objects further allows it to automatically
score a variety of visual models and effectively measure students’
understanding of scientific concepts in a fast, scalable, and robust
manner.

6 EXPERIMENTAL RESULTS
To evaluate our approaches, the experiments can be split into

two phases. The first phase is the evaluation of correct shape classifi-
cation within the visual models. The second phase is the prediction
of Learning Progression (LP) scores and their agreement with the
human score annotations.

6.1 Shape Classification
The first part of this work evaluates multiple approaches to clas-

sify shapes and extract proper features in visual models. These
experiments are conducted on the Ocean Water dataset which had
50 doubly-annotated visual models and an additional 94 single-
annotated models. We evaluate our approaches first on the 50 mod-
els, then on the combined 144 models.

The same metrics are used for evaluation of both datasets. The
“Dataset Accuracy” is calculated as the total number of true positive
predictions divided by the total number of shapes in all images
in the dataset. The “Average Accuracy per Image” is calculated by
first dividing the number of true positives by the total number of
shapes per image. Then, the resulting accuracies for all images
are averaged. The motivation for having two accuracy measures is
that the Dataset Accuracy is less sensitive to outliers in individual
images. Since the goal of this project focuses on micro-object shape
classification, the category of "Other" shapes will be excluded from
all accuracy measures. Furthermore, Precision, Recall, and F1 Scores
are calculated for eachmicro-object type in all visual models and are
shown for the best two predictionmethods, namely, the Rules-based
approach and the Voting system.

The results in Table 3 show that the Rules-based Classification
method achieves the best results for both datasets. The Decision
Tree classifier is a close second on the 50-image subset with notably
higher Average Accuracy per Image. Due to constraints with the
shapes location annotations, machine learning was not applied to
the 144-image dataset. The lower performance of the voting system
implies that the Area Ratios and Hu Moments do not help improve
the Rules-based approach in increasing the overall accuracy for this
particular scenario.

To gain a clearer idea of why the Average Accuracy per Image is
drastically lower than the Dataset Accuracy, each individual image’s
accuracy was analyzed for the Rules-based Classification. It was

Table 3: Accuracy of the 50 and 144 Image Ocean Water
Datasets.

50 Image Ocean Water 144 Image Ocean Water
Methods Dataset Acc. Avg. Acc. Dataset Acc. Avg. Acc.

(%) Per Image (%) Per Image
Voting System 94.3 80.1 81.5 74.8
Rules-based 95.3 80.8 82.3 75.4
Hu Moment 90.2 77.9 74.7 70.0
Area Ratio 93.3 79.5 77.3 72.5
Decision Tree 95.0 94.0 - -
(Supervised)

discovered that images with objects in a non-white background
were achieving lower accuracy figures. This occurs due to our color
segmentation process which merges ranges of colors for efficiency.
However, the majority of the images were not influenced by this
issue, which can be addressed in future work.

Table 4: Voting System (5 Votes) on 50-image Ocean Water
dataset

Voting System (5 votes), 50-image Ocean Water
Arrow Circle Square Triangle Diamond

P 95.7 93.5 78.6 96.0 100.0
R 90.7 94.7 94.3 88.9 100.0
F1 93.1 94.1 85.7 92.3 100.0
Rules-based Classification, 50-image Ocean Water

Arrow Circle Square Triangle Diamond
P 86.4 93.5 78.6 96.0 100.0
R 97.9 94.7 94.3 88.9 100.0
F1 91.8 94.1 85.7 92.3 100.0
Voting System (5 votes), 144-image Ocean Water

Arrow Circle Square Triangle Diamond
P 90.0 97.4 98.1 84.5 100.0
R 78.4 87.2 49.4 92.2 100.0
F1 83.8 92.0 65.7 88.2 100.0
Rules-based Classification, 144-image Ocean Water

Arrow Circle Square Triangle Diamond
P 90.6 97.6 95.7 94.7 100.0
R 84.2 87.4 49.7 92.2 100.0
F1 87.3 92.2 65.4 93.4 100.0

The resulting Precision, Recall, and F1 Scores for the Voting
System with 5 votes and the Rules-based Classification are listed
below in Table 4. The experiments are conducted on both the 50-
image and the 144-image Ocean Water datasets. For the 50-image
dataset, the Voting System had a higher F1 Score and Precision than
the Rules-based Classification for Arrows, indicating that fewer
False Positives were predicted. Since Arrow detection is important
for modeling the Behavior sub-progression in any given LP, the
improved scores for the Voting System validate its use. On the
other hand, the Rules-based Classification achieves a higher Recall,
indicating that fewer False Negatives are predicted. The rest of the
shapes have identical scores, indicating the important role played
by the Rules-based system in the Voting System.

A larger discrepancy emerges on the 144-image dataset. The
Rules-based Classification has a higher F1 Score for Arrows, Circles,
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Table 5: Quadratic Weighted Kappa for Datasets

144-Image 174-Image Two Can 50-Image
Ocean Water Ocean Water Double-Annotated

Learners Voting- Rules- Voting- Rules- Voting- Rules- Voting- Rules- ML-
System based System based System based based based based based
Regressors
Linear 0.46 0.48 0.69 0.69 0.48 0.48 0.61 0.58 0.42
Decision Tree 0.52 0.50 0.65 0.64 0.22 0.22 0.57 0.57 0.42
Logistic 0.53 0.50 0.73 0.73 0.41 0.41 0.25 0.25 0.54
Random Forest 0.56 0.55 0.75 0.77 0.47 0.47 0.56 0.56 0.45
Support Vector 0.53 0.55 0.72 0.76 0.30 0.30 0.47 0.47 0.39
Classifiers
Decision Tree 0.51 0.40 0.72 0.67 0.44 0.43 0.66 0.66 0.60
Random Forest 0.55 0.51 0.74 0.75 0.52 0.52 0.33 0.33 0.57
Support Vector 0.50 0.51 0.69 0.72 0.33 0.34 0.51 0.51 0.51

and Triangles indicating fewer false predictions, while the Voting
System achieves higher precision for Squares. Notably, the F1 Scores
for Squares are around 20% lower in the 144-image dataset for both
methods. Further analysis showed that, in some cases, the back-
ground of the images were divided into parts that were incorrectly
annotated by the human annotators as squares. Our approaches,
however, were able to exclude them as they did not represent valid
shapes. The high Precision, however, of 98.1% for the Voting System
and 95.7% for the Rules-based system, indicates the reliable and
accurate performance of our system.

6.2 Learning Progression Modeling
The ultimate goal of this project is to automatically assign visual

models with a Learning Progression (LP) score between 1-4 using
combinations of 10 aggregated features that were determined using
the shapes features and classifications provided by our Voting and
Rules-based systems. To predict the LP scores, the sets of aggregated
features and their associated ground-truth LP scores are used in
a 10-fold cross validation setting, i.e., 90% of the data is trained to
generate predictions on the remaining 10% during each fold, and
this iteration continues until predictions are generated for 100%
of the data. Supervised regressors and classifiers are trained using
the human annotated ground-truth scores to generate predictions
by tuning on Quadratic Weighted Kappa (QWK), which measures
the similarity between the predicted and human annotated scores
on a scale of 0 to 1, where 0 represents no match and a score of 1
is an identical match. Additionally, Learning Curves of the Linear
Regressions are displayed for each dataset to show the behavior of
the error gap between training and validation sets as the number
of training examples increases.

The first dataset to be analyzed is the 144-image Ocean Water
dataset. To compare the Rules-based Classification and the Voting
System, both methods are independently used to extract all the
necessary features. Then, the 10-fold cross validation is performed.
The resulting average QWK scores for each type of learner are
displayed in Table 5 and the corresponding Learning Curves are
shown in Figure 8. The same analysis is applied to the 174-image
OceanWater dataset which includes the previous 144 models, along
with 30 Synthesized Ocean Water models. Note again that these

Figure 8: 144-image OceanWater learning curves for (A) vot-
ing system and (B) Rules-based methods

Figure 9: 174-image OceanWater learning curves for (A) vot-
ing system and (B) Rules-based methods

30 models are synthesized due to a lack of such LP-4 models in
the dataset collected from the students. The QWK scores for the
larger dataset are displayed in the same Table 5 and the respective
Learning Curves are shown in Figure 9.

The results for the 144-image Ocean Water dataset show a peak
QWK score of 0.56 for the Voting System and 0.55 for the Rules-
based system, both of which are achieved with the Random Forest
Regressor, as seen in Table 5. For the 174-imageOceanWater dataset,
an average QWK score of 0.716 with a standard deviation of 0.046
is achieved with the Rules-based approach and an average QWK
score of 0.711 with a standard deviation of 0.033 is achieved with
the Voting System. The peak score for both methods is achieved
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Figure 10: TwoCan learning curves for voting system (A) and
Rules-based (B)

using the Random Forest Regressor, achieving scores of 0.75 for the
Voting System and 0.77 for the Rules-based Classification. These
results indicate that it is possible to predict the LP level of an Ocean
Water visual model instance using automatically extracted features,
and such predictions agree well with human annotations.

The narrow error gap in both learning curves in Figure 9 also
suggests a high bias situation, where adding more data for training
probably does not contribute much to performance enhancement.
Rather, efforts should be directed at conceiving and engineering
more features to improve performance. Still, both approaches (Vot-
ing system and Rules-based) stagnated at around 0.76 for both
training and cross-validation QWK suggesting that these methods
are already minimally effective.

The second dataset to be analyzed is the 195-image Two Can
dataset. Note that this dataset was not used to evaluate our shape
detection systems, as it does not include human annotations of
shapes. As earlier, the 10 aggregated features are extracted using
the shape classification techniques provided by the Rules-based
and Voting systems, followed by a 10-fold cross validation experi-
mentation. The average QWK Score of the 10 folds is displayed in
Table 5.

The resulting QWK Scores are very similar for both the Voting
System and Rules-based approaches. This further shows that both
of them generalize to novel datasets in a similar manner. For both
methods, the average QWK Score for this dataset is 0.4 with a
standard deviation of 0.1, while the peak score is achieved using the
Random Forest Classifier with a QWK score of 0.52. These results
are relatively lower than those of the OceanWater dataset, a finding
that can be best explained by the nature of the data in the Two Can
dataset which contains hand-drawn objects and labels.

Further tests are conducted on the 50-image OceanWater dataset
to compare LP predictability using machine learning (supervised
Decision Tree for shape classification in the first stage) for object
classification and feature extraction with the Rules-based approach
and the Voting System. The 50-image dataset is used as the ground-
truth were doubly annotated for this subset, providing appropriate
validation for supervised learning which requires a large number
of valid labels. The results indicate that the Voting System and
the Rules-based approaches are slightly better than the machine
learning approach, as they achieve a QWK score of 0.66 compared to
0.6. Although the machine learning method achieves a lower QWK
score compared to the other approaches, a score of 0.6 is promising

and warrants future exploration of ML-based approaches for shape
classification as additional data is acquired.

6.3 Cross-Domain Analysis
After testing the individual datasets, a cross-domain analysis is

performed using the Ocean Water and Two Can datasets. Table 6
illustrates the results of using the most effective learners from Table
5, where the Ocean Water dataset is used for training and the Two
Can dataset is used for testing, instead of the 10-fold cross validation
used earlier with the individual datasets. The results show a peak
score of 0.37 using Support Vector Regression. The average QWK
score among the eight learners is 0.28 with a standard deviation of
0.065. These results are consistent with the theoretical expectations
that cross-domain scores will be lower compared to in-domain, i.e.,
testing on the same dataset domain from which training instances
are obtained.

Table 6: Cross-Domain Quadratic Weighted Kappa

Ocean Water (train) Two Can (train)
Two Can (test) Ocean Water (test)

Learners QWK
Regressors

Linear 0.21 0.47
Decision Tree 0.34 0.27
Logistic 0.25 0.49
Random Forest 0.34 0.23
Support Vector 0.37 0.21

Classifiers
Decision Tree 0.26 0.12
Random Forest 0.28 0.16
Support Vector 0.19 0.21

The second cross-domain analysis is the reverse of the first. In
this case, the Two Can dataset is used for training and the Ocean
Water dataset is used for testing. Notably, there are 32 instances in
the Ocean Water dataset that have an LP score of 4, whereas there
are no instances of an LP score of 4 in the Two Can dataset. Hence,
this LP score cannot be predicted as it is missing in the training data.
For this reason, the 32 instances are removed, leaving a 144-image
Ocean Water test set. In Table 6, the results show a peak QWK
score of 0.49 for Logistic Regression, an average score of 0.27 for
the eight learners, and a standard deviation of 0.137. The larger
standard deviation in this case can be attributed to the presence of
manually drawn shapes in the Two Can dataset, which is used for
training, that are harder to detect correctly.

7 CONCLUSION AND FUTUREWORK
To automate scoring of scientific visual models drawn by stu-

dents in the process of scientific knowledge acquisition, we pro-
posed a multitude of image processing techniques, a novel cas-
caded system, an unsupervised Rules-based system, and a novel
arrows orientation detector to classify different shapes and extract
construct-relevant features. These classifications and features were
aggregated into a set of 10 higher-level features used for effective
scoring students’ learning progression in a way that also addresses
the scalability concerns.
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The accuracy for shapes detection and classification achieved a
maximum of 95.3% on the 50-image dataset that has doubly anno-
tated labels with our Rules-based system. Our approaches, along
with the novel method to determine Arrows orientation, were val-
idated by the high QWK scores, averaging above 0.7 for the 174-
image Ocean Water dataset and peaking at 0.56 for the 144-image
dataset. This indicates the feasibility and potential of employing a
fully automated pipeline to effectively score visual models.

A key aspect that can be explored for future improvement with-
out additional resources is color segmentation. Upon further analy-
sis, it was found that few images had objects in a non-white back-
ground. Our belief is that during the binarization of the image, the
objects were mixed in with the background, thus making them
undetectable. Future work can explore methods to remedy this.

The results of automated scoring using Rules-based approach
and the Voting System indicated the feasibility of applying our
novel approaches for automatic scoring to solve the scaling issue
and show promise for this new line of research, making scientific
visual modeling a viable tool for widespread use.
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