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ABSTRACT
Distracted and drowsy driving are two very common causes of
car accidents as they contribute to 2.3% of all the fatalities caused
on the US roads. Therefore, in the era of smart driving there is an
increased need of technologies able to monitor driver’s alertness
and provide timely alerts to the driver. In this paper, we conduct
as pilot study and we present a preliminary, yet novel multimodal
dataset, collected from 10 subjects using three di�erent modalities.
Our modalities include a thermal camera, an RGB camera, and four
physiological indicators. The dataset consists of two recording ses-
sions for each subject, thus, o�ering in total 20 multimodal driving
sessions. We propose a machine learning framework aiming to
investigate the hypothesis that multimodal features have higher po-
tential towards driver alertness detection. Our dataset and analysis
focus on exploring the di�erences between alertness and drowsi-
ness as they intersect with the presence of di�erent distractions.
The results highlight the validity of our hypothesis and introduce
interesting future directions for research.

CCS CONCEPTS
• Information systems → Task models; Personalization; • Ap-
plied computing → Transportation; • Human-centered com-
puting→Ubiquitous andmobile computing design and eval-
uation methods.
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multimodal dataset, driver alertness, distracted driving, action units,
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1 INTRODUCTION
Sleeping at the wheel is one of the main causes of car accidents
worldwide. According to a AAA Tra�c Safety Foundation study,
37% of drivers reported having slept behind the wheel at least once
at a certain point in their lives. Furthermore, an estimated 21% of
fatal accidents, 13% of accidents resulting in severe injury, and 6%
of all accidents involve a drowsy driver [36].

As reported by the National Highway Tra�c Safety Administra-
tion (NHTSA), in 2015 there was an increase of 7% of fatal crashes
(2346 fatal crashes) in the US compared to the year before [13].
In addition, there were 824 fatalities (2.3 percent of all fatalities)
attributed to driving while being drowsy or sleepy. NHTSA found
that this types of accidents often involve a single vehicle, with no
passengers apart from the driver, speeding o� the road with no
braking evidence. That can be attributed to the fact that drowsi-
ness slows reaction time and signi�cantly impacts and delays the
decision of braking. It was also estimated that about 100,000 re-
ported accidents involve a low level of alertness of the driver. These
crashes, do not only cause �nancial loss, but also severe physical
damages, including approximately 1,550 deaths, 71,000 injuries and
$12.5 billion in �nancial damage.

Driving while being drowsy not only a�ects the driver and pas-
sengers, but also all road users such as pedestrians, cyclists and
motorists. Exhausted driving has become a normality due to in-
creased workload, constant pressure, over-exertion, and lack of
sleep. Despite the presence of research on the factors that a�ect
the alertness of drivers, there is still no mean to measure or classify
them precisely and reliably. In order to reduce the risks associated
with drowsy driving, more extensive research is required to detect
and understand the various driver states.

Nonetheless, a report by the National Highway Tra�c Safety
Administration in 2012 indicated a reduction in the number of fatal
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accidents between 1995 and 2012 as automotive technology and
safety features were gradually increased [19]. The aforementioned
�ndings, observations and needs have motivated an increasingly
evolving �eld of research that focuses onmonitoring and preventing
drowsy and distracted driving.

For the purposes of this work, we have collected a multimodal
dataset, targeting driver’s alertness detection and we provide an
analysis of three modalities regarding their ability to distinguish be-
tween alert, drowsy and distracted driving. The dataset is composed
of physiological, visual and thermal modalities collected using a
driving simulator for 10 subjects at di�erent times of the day. The
main purpose of this research is to determine which modalities have
higher discriminative capability in measuring the alertness level of
the drivers and whether the integration of multimodal features can
induce further improvements. Moreover, we research how di�erent
facial features and action units [12] may be associated with alert,
drowsy and distracted driving behaviors. Finally, unlike previous
studies, this work expands the binary classi�cation of drivers from
"Alert" vs "Not Alert" into three and four di�erent categories in an
e�ort to understand how various alertness levels may correlate to
distracted driving.

This paper is organized as follows. Section 2 overviews previ-
ous work that was proposed to detect driver’s alertness. Section
3 details the preliminary dataset used in our experiments. Section
4 introduces our proposed approach to create a system that can
discriminate between di�erent behavioral states of drivers. Our
experimental results are presented in Section 5. Section 6 discusses
how the proposed framework could be utilised in a real-life scenario
and �nally, conclusions and guidelines for future work are provided
in Section 7.

2 RELATEDWORK
Several approaches have been developed to track driver’s alertness
using visual, physiological, sensorial, behavioral, and environmen-
tal information [1, 17, 24].

In earlier studies, Palvidis et al.[31] collected data from 6 subjects
to detect facial patterns of anxiety, alertness, and/or fearfulness on
di�erent scenarios using a computer vision approach. The same
number of subjects was used by Lin et al. [25] to predict driver’s
drowsiness based on EEG signals. For their experiments, the authors
used a VR-based driving simulator where subjects had to perform
long-term monotonous driving on a straight highway. More re-
cently, using a similar setup on a di�erent task, Papakostas et al.,
exploited facial features and EEG to detect signs of cognitive fatigue
on a group of 19 participants [30]. Their results highlighted the
advantage of multimodal machine learning towards detecting the
short-term deterioration of cognitive performance.

Craye et al. [10] attempted to detect drowsiness by collecting
data from 12 participants. In addition to physiological and car input
signals, they used an RGB camera and an infrared camera tomonitor
the driver in a driving simulation framework.

Kiashari et al. [21] showed that the respiratory state of a person
can be tracked without interference using thermal imaging and that
the observed �uctuations may be highly correlated to wakefulness
and drowsiness. Thermal imaging-based respiration monitoring

was accomplished by observing the di�erence in temperature be-
tween the air entering and leaving the respiration system. A res-
piration signal was constructed by localizing the nostrils’ zone,
which was followed by putting together the mean temperature of
the nostril region in all of the frames.

By utilizing the visual channel carrying facial expressions and
the auditory channel carrying voice intonations, Cowie et al. [9]
developed a hybrid framework towards recognizing the a�ective
state of individuals. Kolli et al. [22] were able to detect driver’s
emotions using an infrared thermal camera, while Lopez et al. [26]
used a thermal camera to identify fatigued individuals by apply-
ing an SVM classi�er on the feature vectors extracted from two
convolutional neural networks .

Other studies have investigated automatic drowsiness and dis-
traction recognition during driving using di�erent types of visual
features. Jie et al., [20] investigated yawning behavior in simulated
driving scenarios as a sign of sleepiness, bymonitoring spontaneous
gestures of drowsy drivers. Furthermore, Du et al. [11] extracted
facial features using the OpenFace library [5] and combined them
with speech features and car driving measures to detect distracted
behavior in drivers. In most related work that was based on mul-
timodal feature analysis, concatenating the di�erent features in
an early stage has proven to be one of the most prominent fusion
methods [1, 10, 23]. Overall, the majority of the proposed work
used environmental, behavioral, physiological and visual modali-
ties while our multimodal approach is solely based on diverse and
implicit, human-generated signals.

3 DATASET
For our experiments, we gathered amultimodal dataset consisting of
thermal, audiovisual and physiological recordings from 10 subjects,
7 males and 3 females, during two recording sessions per subject
while using a driving simulator. The �rst recording session took
place in the morning assuming that the subjects were more alert
compared to a later point in the day, after a long day at work or
after attending a series of classes at the University. After a typical
working day, the second session was recorded during the evening
to simulate drivers’ drowsiness.

There were three di�erent types of recordings for each session.
The �rst recording was a normalization baseline, where the subjects
were seated without any activity.

The second recording consisted of a total of twenty minutes of
free driving. For this step, only the last three minutes of driving
were recorded to make sure the driver was deeply involved in
driving and had familiarized him/herself with the simulator.

During a ten-minute interval, the last recording was captured
for four minutes where three di�erent types of distractors were
introduced to the subjects. First, a cognitive distractor was intro-
duced called the N-Back task [29], where the subject had to listen
to a sequence of letters and loudly pronounce any letters repeated
after a sequence of two other letters (ie. N=2). Second, an emo-
tional distractor was applied, where the subject shared his personal
experience on an emotional topic of his choice. Finally, a physi-
cal distractor, where the subject was asked to search for di�erent
addresses using the GPS on his phone while driving.
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The same set of recordings were repeated for the evening ses-
sion. For the thermal recordings, the FLIR SC6700 high-resolution
thermal camera was used to detect and track the driver’s thermal
patterns in �ve di�erent areas of the face including the entire face,
forehead, eyes nose and cheeks. The camera is a state-of-the-art
scienti�c-grade thermal camera. The resolution of the FLIR SC6700
is 640x512 and 7.2 M electrons, achieving a frame rate of approxi-
mately 100 frames per second.

The visual recordings consist of the subject’s frontal view fo-
cusing on the face area, which is recorded using a Raspberry Pi
camera.

The physiological recordings contain measurements of the sub-
ject’s skin conductance, blood volume pulse, respiration rate and
skin temperature from four physiological biosensors attached to the
subject’s hands and thoracic area. For the physiological recordings
we used the “ProComp in�nity" biosensor device which has been
used in several studies in the past [3]

4 METHODOLOGY
4.1 Feature Extraction
We extracted features from the individual modalities to create our
multimodal model using two approaches, early fusion and late
fusion. In the early fusion approach, we concatenated the features
before classi�cation is performed. For the late fusion approach,
the �nal prediction was performed using majority voting of the
individual decisions from the three modalities.

4.1.1 RGB video: The OpenFace library was used to extract vi-
sual features describing the facial behavior of the subjects [5] from
videos captured using the Raspberry Pi device. For the detection of
facial landmarks, we deployed a Constrained Local Neural Field al-
gorithm (CLNF) [5]. CLNF was preferred over a Constrained Local
Model (CLM) [6] approach for its improved results. CLM strug-
gled to perform in poor lighting and was signi�cantly a�ected by
occlusions thus, introducing a lot of noise in the facial-landmark
detection task.

The CLNF algorithm involves a Local Neural Field (LNF) patch
expert, which learns about both adjacent and long distance pixels
by gaining information on similarity and sparsity constraints over
long distances. This provides the local variation of each landmark’s
appearance. The second main component for facial landmark de-
tection is Point Distribution Model, which captures variation in the
shape of facial landmarks.

The CLNF model is initialised using the facial landmarks de-
tected in past frames, while processing the videos. This allows
68 facial landmarks to be detected at every frame [5]. The 3D fa-
cial landmarks detected at each step, are then projected using an
orthographic camera projection, to detect the pose of the head[15].

For eye gaze detection, the system �rst detects landmarks in
the image region associated with the eyes and then estimates the
position of the pupil based on the intersection of a ray passing
through the pupil and the eyeball sphere. The outcome of the eye
gaze detection is a feature vector for each eye describing the position
of the pupil. Figure 1 presents gaze and head pose estimations and
facial landmark detection on video frames from our dataset; green

lines represent the estimated eye gaze vectors, 3D representation
shows the head pose estimation.

Figure 1: Gaze and head pose estimations and facial land-
mark detection on video sequences

For extracting facial appearance features, OpenFace uses simi-
larity measures transformed from the presently noticed facial land-
marks to a neutral expression frontal landmark representation.
The Histogram of Oriented Gradients (HOG) is extracted from the
aligned face producing a high-dimensional vector of 4464 features.
In order to reduce the dimensionality, Principal Component Analy-
sis (PCA) is applied [38]. CLNF’s facial shape features and reduced
dimensionality HOG features are then used for predicting Action
Units (AUs) and measuring the AU intensity. An AU describes facial
deformation due to each facial muscle movement [12]. OpenFace is
able to identify 18 di�erent AUs and provides a metric indicating
the intensity or the presence of each of these AUs. The presence
is recorded as 0 (absent) or 1 (present) respectively and the inten-
sity ranges from 0 to 5, where 0 means the AU is not present, 1 is
the lowest intensity level and 5 represents the maximum intensity.
Table 1 summarizes the details of each of the 18 AUs.

Table 1: List of AUs inOpenFace. I corresponds to "Intensity"
and P to "Presence".

AU Full name Prediction
AU1 Inner brow raiser I
AU2 Outer brow raiser I
AU4 Brow lowerer I
AU5 Upper lid raiser I
AU6 Cheek raiser I
AU7 Lid tightener P
AU9 Nose wrinkler I
AU10 Upper lip raiser I
AU12 Lip corner puller I
AU14 Dimpler I
AU15 Lip corner depressor I
AU17 Chin raiser I
AU20 Lip stretched I
AU23 Lip tightener P
AU25 Lips part I
AU26 Jaw drop I
AU28 Lip suck P
AU45 Blink P
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OpenFace framework is implemented using state-of-the-artmeth-
ods for AU recognition [4, 37], and it is tailored to be easily applica-
ble on natural videos sequences from unseen datasets [6]. Similar
approaches that deployed more complex algorithms such as deep
learning or physical geometry-based features [16, 37] were outper-
formed by the OpenFace approach when tested on the SEMAINE
dataset [27], which shares some similarities to our data. There-
fore, we chose OpenFace for providing a more reliable and suitable
solution to our problem.

4.1.2 Thermal Imaging: For analysing the thermal video, we
followed three main processing steps. The �rst step was to segment
the faces of the participants into �ve di�erent regions, including
the entire face, forehead, eyes, cheeks, and nose. Thereafter, our
tracking algorithm proposed in [7], was applied to track these
regions throughout the recording. Finally, by creating thermal maps
for all regions of interest, we generated the �nal thermal feature
vectors.

In more details, the �rst step was to manually segment the Re-
gions Of Interest (ROIs) from the �rst frame of each of the video
recordings, as automatic methods of face detection did not show
acceptable performance on thermal images. Then, to capture points
of interest in the detected ROIs, a variation of the Shi-Tomasi corner
detection algorithm [34] was applied by computing the weighted
square di�erence between two successive frames.

As the method compares an image patch �1 (G8 ) with a shifted
version of the image, �1 (G8 + �D), an auto-correlation function S
was used.

( (�D) =
’
8

F (G8 ) (�0 (G8 + �D) � �0 (G8 ))2 (1)

where u is the displacement vector andF (G8 ) is a window function.
The function is approximated using Taylor Series expansion into

( (�D) ⇡
’
8

F (G8 ) (r�0 (G8 ).�D)2 (2)

where,

r�0 (G8 ) = ( m�0
mG

,
m�0
m~

) (G8 ) (3)

We used a �xed-size Gaussian �lter to smooth the calculated gradi-
ent. Thus, S can be rewritten as:

( (�D) = �D)+�D (4)

where V denotes the auto-correlation matrix. The interesting cor-
ner points to be tracked were located using the variation in S by
computing the minimum eigenvalues from V.

The interesting pointswere usually locatedwhere sharper changes
in the colors existed indicating the possibility of the presence of a
blood vein controlling the temperature of the surrounding region.
Figure 2 shows the points of interest detected in the face region with
a relatively lower threshold, allowing more points to be detected.

To stabilize the ROI bounding box for the duration of the videos
we tracked them by applying a fast version of the tracking method
KLT [35], which is a tracking method that provides very accurate
results when the tracked objects maintain their shape over time.

The algorithm estimates the relocation of points of interest be-
tween two successive frames by assuming a slight displacement
between the pixels in a frame at times t and t + g , which was very

Figure 2: Points of interest detected in the face region

suitable to our tracking needs. Following the tracking process and
the displacement estimation, a geometric transformation was ap-
plied to map the interesting points between the frames. This latter
transformation globally estimated the transformation of interesting
points based on similarity . We set a threshold of 95% of successfully
mapped points between two successive frames as a precaution to
account for potential occlusion such as not having the subject face
in the frame or getting it partially. In case of occlusion, the current
frame will be skipped, and the tracking will resume.

Lastly, in order to extract potentially indicative thermal features
of drowsy and distracted behavior residing in our �ve regions of
interest, we created a thermal map outlining the thermal patterns
in the regions of interest. For this purpose the following steps had
to be implemented in that order: a) ROI segmentation, b)segment
binarization, c)image masking and d) thermal map cropping for
each ROI. This process is demonstrated in Figure 3.

Figure 3: The process of segmenting, binarizing, masking
and cropping the thermal faces

The pixel values represented temperatures in Fahrenheit. The
map was formed by extracting the mean of the pixel values within a
ROI, theminimum temperature, themaximumpixel value represent-
ing the highest temperature, the di�erence between the maximum
and minimum temperatures, the mean of the 10% highest pixel val-
ues representing the mean of the 10% highest temperatures, and a
histogram over the values of the pixels in a ROI, which corresponds
to the temperature distribution in that region.

4.1.3 Physiological Sensors: Four physiological sensors were
used to obtain the raw physiological measurements as well as statis-
tical features derived from them over time. The extracted features
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include the maximum and minimum values, means, power means,
standard deviations and mean amplitudes, among others.

The �rst sensor is a Blood Volume Pulse (BVP) sensor or pho-
toplethysmograph that used infrared light against the subject’s
skin surface to detect blood variation in the skin by measuring the
amount of re�ected red light. That is due to the fact that blood
tends to absorb most colors other than those in the spectrum of
red.

The second sensor is a Skin Conductance (SC) measuring module.
Skin Conductance is an index of the Sympathetic Nervous System
(SNS)’s activation and emotional arousal. A small electrical potential
is introduced in order to assess SC between two electrodes that
are strapped or attached to the �ngers and measure the amount of
current between the electrodes.

The third module captured Skin Temperature (ST) and is a tem-
perature measuring sensor attached to the small �nger.

Finally a Respiration Rate (RR) sensor was used to extract ab-
dominal respiration features. RR is a very motion sensitive device,
capturing the stretches that occur during respiration as the system
is wrapped around the thoracic region.

The �nal feature set consisted of a total of 77 physiological fea-
tures including 50 BVP features, 7 SC features, 9 RR features, 7 ST
features, and 4 features extracted from the BVP and the RR sensors
combined, such as the mean and heart rate max-min di�erence,
which is a measure of breath to heart rate variability. After calcu-
lating the maximum, mean, minimum and standard deviations to
obtain four di�erent vectors, we concatenated these new measure-
ments into a new vector of 308 measurements.

4.2 Classi�cation
Motivated by previous work that highlighted the potentials of De-
cision Tree classi�ers (DT) on producing promising results with
similar types of data [2, 32, 33], we used the same algorithm to
estimate a benchmark performance on our dataset.

We performed a 10 leave-one-out cross validation scheme on the
features extracted from the 39 recordings for the three modalities
since we discarded one recording for low data quality. The �nal
result is the average of those ten runs.

We did explore the use of additional classi�ers such as SVM,
Nearest Neighbor, and Naive Bayes, however, DT showed steady
improvement in the classi�cation performance over all other classi-
�ers, as well as better model interpretability.

As already discussed, for the purposes of this paper we experi-
mented with 3 di�erent classi�cation approaches:

• Binary:
(1) "Drowsy": drowsiness without distraction + drowsiness

with distraction
(2) "Alert": alertness without distraction + alertness with dis-

traction
• 3 Classes:
(1) "Drowsy": drowsiness without distraction
(2) "Alert": alertness without distraction
(3) "Distracted": drowsiness with distraction + alertness with

distraction
• 4 Classes:
(1) "Drowsy": drowsiness without distraction

(2) "Alert": alertness without distraction
(3) "Drowsy Distracted": drowsiness with distraction
(4) "Alert Distracted": alertness with distraction

4.2.1 MultimodalClassification: Multimodal classi�cationwas
performed by integrating the features from the di�erent modali-
ties using two approaches. Firstly we performed an early modality
fusion by concatenating the features obtained from the thermal,
visual and physiological streams, to create a single feature vector,
which was then used for classi�cation.

Secondly a late fusion approach was followed, where the �nal
overall accuracy was determined by using the majority vote of the
three decisions derived from each modalities. The fused decision is
computed as:

� (G) = 0A6max
~

#’
8=1

58 (G) (5)

where N is the number of modalities; N=3 in our experiments.

5 RESULTS
For our evaluation we report the average overall accuracy, and
per class recall and f1 score. We argue that monitoring recall will
provide a more trustworthy evaluation of our system compared to
just accuracy. That is due to the fact that the goal of this task is to
maximize the detection of positive samples. Observing f1 helps to
keep track of false-positive rate so that the model is not over�tted.
As it can be observed in the results discussed below, in most cases
recall and f1 values were close indicating the stable behavior of the
�nal models. For our evaluation, we run a 10 leave-one-out cross
validation scheme and we show the averaged results on all three
metrics.

Thermal features were created using di�erent histogram sizes:
20, 60, 120, 180 and 255 to detect driver’s drowsiness. The features
were extracted as detailed in Section-4.1.2 from �ve di�erent re-
gions of the face. We normalized our features vectors by dividing
each vector with the mean of the normalization vector calculated
from the baseline recording, in which the subjects were recorded
without activity. The aim of this kind of normalization is to produce
features that represent the personalized behavioral changes given
the subject’s baseline recordings and avoid biases introduced by
the variations across di�erent subjects.

Based on our preliminary experiments, the 20-bin histogram
showed the best performance compared to the other evaluated
histogram sizes. Each region had a set of 25 features resulting in a
total of 125 combined thermal features from the �ve regions.

Table 2 illustrates the overall accuracy, recall and f1 score on the
di�erent classi�cation schemes using only the thermal modality. As
it can be observed from the table, as the number of classes increases
the discrimination ability of the thermal features signi�cantly drops.
However, it is worth noting that in the binary classi�cation task,
the thermal modality seems to be quite e�ective on distinguish-
ing between alertness and drowsiness giving an improvement of
approximately ~20% over the random choice baseline in terms of
accuracy. An observation that is also re�ected by the improved
performance in terms of recall and f1. However in both multicalss
problems, the model’s accuracy signi�cantly drops and is compa-
rable or slightly worse than the baselines. An explanation for this

83



PETRA ’20, June 30-July 3, 2020, Corfu, Greece Kais Riani, Michalis Papakostas, Hussein Kokash, Mohamed Abouelenien, Mihai Burzo, and Rada Mihalcea

behavior can be attributed to the small number of available samples,
especially for multiclass classi�cation, which makes it more di�cult
to generalize well.

Table 2: Thermal Features Classi�cation Results

4 Classes
Classi�er Class Baseline Accuracy Recall f1 score

DT

Alert 25.64

23.32

16.00 16.08
Alert Distracted 25.64 32.00 27.94

Drowsy 25.64 24.00 23.79
Drowsy Distracted 23.07 21.10 24.33

3 Classes
Classi�er Class Baseline Accuracy Recall f1 score

DT
Alert 25.64

30.25
18.00 18.82

Drowsy 25.64 31.00 31.78
Distracted 48.71 36.31 34.70

Binary
Classi�er Class Baseline Accuracy Recall f1 score

DT Alert 51.29 71.02 68.50 70.72
Drowsy 48.71 73.68 71.19

Table 3 shows the classi�cation results using the RGB video
from the raspberry pi camera. The results indicate that RGB fea-
tures can consistently o�er improved performance over the baseline
in all classi�cation scenarios. As expected, similar to the case of
the thermal features, a larger number of classes results in lower
performance and imbalanced results. However, in contrast to the
thermal modality, the improvements observed here over the base-
lines are more profound in all cases. Interestingly, recall shows a
general improvement when measured on distraction classes ("Alert
Distracted", "Drowsy Distracted" and "Distracted"), which may indi-
cate that distractions can be detected more e�ectively by the RGB
visual features than features extracted from the Thermal domain.

Table 3: Visual Features Classi�cation Results

4 Classes
Classi�er Class Baseline Accuracy Recall f1 score

DT

Alert 25.64

31.53

27.00 26.32
Alert Distracted 25.64 29.00 32.19

Drowsy 25.64 23.00 22.39
Drowsy Distracted 23.07 48.88 45.33

3 Classes
Classi�er Class Baseline Accuracy Recall f1 score

DT
Alert 25.64

55.63
29.00 28.81

Drowsy 25.64 28.00 26.96
Distracted 48.71 84.21 84.90

Binary
Classi�er Class Baseline Accuracy Recall f1 score

DT Alert 51.29 83.84 86.00 84.49
Drowsy 48.71 81.57 83.09

Table 4 shows the classi�cation results using only the physio-
logical modalities. The results highlight the superior performance
of the physiological-based model to recognise states related to the
"Alert" class, in both multiclass problems.

It is interesting to note that for binary classi�cation, compared
to other modalities and in contrast to the multiclass schemes, the
physiological features exhibit lower performance. This observation

Table 4: Physiological Features Classi�cation Results

4 Classes
Classi�er Class Baseline Accuracy Recall f1 score

DT

Alert 25.64

37.94

61.00 64.07
Alert Distracted 25.64 28.00 29.11

Drowsy 25.64 31.00 27.88
Drowsy Distracted 23.07 31.10 30.52

3 Classes
Classi�er Class Baseline Accuracy Recall f1 score

DT
Alert 25.64

38.97
54.00 55.07

Drowsy 25.64 20.00 17.91
Distracted 48.71 41.05 43.02

Binary
Classi�er Class Baseline Accuracy Recall f1 score

DT Alert 51.29 61.02 60.00 61.19
Drowsy 48.71 62.10 60.76

Table 5: Multimodal Classi�cation Results from combining
thermal, physiological and raspberry pi camera features

4 Classes
Classi�er Class Baseline Accuracy Recall f1 score

Early Fusion

Alert 25.64

55.12

73.00 78.72
Alert Distracted 25.64 32.00 31.34

Drowsy 25.64 72.00 66.45
Drowsy Distracted 23.07 42.22 42.27

Late fusion

Alert 25.64

35.12

60.00 41.69
Alert Distracted 25.64 33.00 33.95

Drowsy 25.64 16.00 17.99
Drowsy Distracted 23.07 31.10 44.33

3 Classes
Classi�er Class Baseline Accuracy Recall f1 score

Early Fusion
Alert 25.64

79.73
69.00 76.06

Drowsy 25.64 77.00 69.47
Distracted 48.71 86.84 87.30

Late fusion
Alert 25.64

46.14
53.00 43.52

Drowsy 25.64 16.00 21.67
Distracted 48.71 58.41 57.04

Binary
Classi�er Class Baseline Accuracy Recall f1 score

Early Fusion Alert 51.29 64.09 59.5 62.72
Drowsy 48.71 68.94 64.83

Late fusion Alert 51.29 82.04 79.92 81.72
Drowsy 48.71 84.36 82.32

comes to con�rm our hypothesis that a multimodal approach is
highly suited for the purposes of our task.

5.1 Integrated Modality
Table 5 summarizes the performance of the two multimodal ap-
proaches with early and late fusion, as discussed in Section 4.2.1.
For our multimodal experiments, we combined all thermal, phys-
iological and visual features and evaluated using the same three
classi�cation schemes.

Compared to using the features of individual modalities, the mul-
timodal representations show a steady improvement for multiclass
classi�cation. For the three-class classi�cation scheme when using
early fusion, the accuracy exceeds 79% and for the four-class ex-
ceeds 55%. Moreover, the per-class recall exceeds the corresponding
baseline in both multiclass approaches when using early fusion.
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Nevertheless, the accuracy of the late fusion method did not show
comparable results to early fusion.

What is most interesting is that despite the fact that in both
multiclass problems early modality fusion outperforms all other
approaches, in the binary class problem visual models dominated
the task. This might indicate a strong correlation of visual features
with the states described by the "Alert" and "Drowsy" classes but
also their inability to perform equally well when distractions are
targeted as explicit states.

Lastly, there are few cases where low recall values are observed.
Fluctuations in recall across the di�erent experiments are evenmore
noticeable when the thermal or the RGB data were exclusively used.
Physiological data seem to provide slightly more stable results
and probably have a signi�cant positive impact on our multimodal
experiments as well. A possible explanation about this observation
could be the limited amount of available data, which fail to represent
adequately the targeted classes, especially in the 3-class and 4-class
problems. We plan to further investigate these observations in the
future by expanding our dataset with more participants.

Table 6: Summary of the results

Modality
Classi�cation Thermal Visual Physiological Early Fusion Late Fusion

Binary 71.02 83.84 61.02 64.09 82.04
3-Class 30.25 55.63 38.97 79.73 46.14
4-Class 23.32 31.53 37.94 55.12 35.12

A summary of the classi�cation results is presented in Table
6. The visual modality outperformed all other modalities with an
accuracy of 83.84% using a DT classi�er in the binary case of "Alert"
and "Drowsy" classes. The visual output in the multiclass classi-
�cation, however, was outperformed by the early fusion method
which achieved an accuracy of 79.73% in the classi�cation of the
three classes "Alert", "Distracted" and "Drowsy." In addition, using
early fusion, the accuracy increased to 55.12% compared to 37.94%
obtained by the best individual modality in the classi�cation of the
four classes.

5.2 Action Unit Analysis
Figure 4 provides a more in depth analysis on how the di�erent
AUs are associated with drowsiness and alertness. To �nd patterns
correlated with alertness vs. drowsiness, the graph bars are calcu-
lated by subtracting from the alertness values the average of the
drowsiness AU feature values.

A positive result therefore speci�es an association between an
AU and alertness, while a negative result indicates an association
between anAU and drowsiness. The resulting �gure gives insightful
observations. Alertness is highly associated with the Lip Stretched
and Lips Part. Furthermore, for the majority of subjects, Inner brow
raiser and Outer brow raiser are strongly associated with alertness.
In addition, it is interesting how higher blinking rates have a higher
alertness association rather than drowsiness. All the above are
important observations that we plan to investigate deeper in the
near future.

6 DISCUSSION
Applying such a multimodal system in real life could be proven
very bene�cial towards increasing road safety. However, a future
utilization of our approach would demand several modi�cations in
terms of hardware so that the di�erent sensors will not interfere
with the driving process.

First and foremost,the wired, body-placed physiological sensors
should be replaced with alternative devices that would be attached
either on di�erent parts of the car or would be wireless, wearable
devices worn by the drivers. Sensors like the blood volume pressure,
body temperature and skin conductance could be potentially placed
on the steering wheel, while breathing rate sensors could be located
on the safety belt of the driver. Works like the ones presented by
Choi et al. [8] and Muhlbacher et al. [28] are excellent paradigms of
such methods. Other o�-the-shelf devices like Empatica, which was
designed by the team of Rosalind Picard at MIT could also play an
important role towards that end [14] . Another alternative would
be to extract the physiological features from the thermal data as
discussed by Hessler et al. [18].

Lastly, despite the high quality o�ered by the FLIR SC6700 ther-
mal camera, the expense of such a device makes it impossible to
place it in the a real vehicle. Hence, in our future work we plan to
use a low-resolution thermal camera to compare the trade-of be-
tween performance and resolution when using the di�erent thermal
sensors.

7 CONCLUSIONS & FUTUREWORK
In this study, we introduced a preliminary novel multimodal dataset
for driver’s alertness detection and we preformed a pilot study
on discriminating between drowsiness, alertness, and distraction.
To our knowledge, this is the �rst approach to monitor the three
driver’s states combined using physiological, visual, and thermal
modalities. In addition to the dataset, this research addressed three
main objectives. First, we investigated the advantages of thermal
features towards monitoring alertness levels as it is a highly under-
researched modality. Second, our work extended the standard bi-
nary classi�cation problem into a three- and four-classes problem
to detect di�erent levels of driver’s alertness. Last, we studied which
modalities have higher discrimination ability towards classifying
alertness in drivers.

Our experimental results highlighted the advantages o�ered by
multimodal feature learning, showing signi�cant improvement over
all individual modalities for both multiclass classi�cation schemes.
Early modality fusion lead to improved performance compared to
individual modalities for multiclass classi�cation with an overall
accuracy of 79.73% for the three-class scheme and 55.12% for the
four-class approach. Similar behaviors were observed by the recall
per class as well.

On the other hand, this did not hold true in the binary classi�ca-
tion approach where visual features showed better discrimination
ability between alert and drowsy states. Thermal modalities showed
promising performance on the binary task as well but failed to rep-
resent either of the multiclass problems. Physiological data at last,
showed high correlation to the state of alertness when evaluated in
the multiclass classi�cation schemes which was contradictory to
the performance of the other individual modalities under the same
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Figure 4: Action Units

evaluation conditions. In addition, we provided an analysis of facial
action units to discover interesting behavioral correlations between
facial expressions and the states of drowsiness and alertness.

The promising results and the insightful �ndings extracted from
this analysis will be valuable towards the future directions of our
research in the topic. In the next steps, we plan to signi�cantly
expand our dataset and investigate in further depth the scalability
of our current �ndings. Moreover, we plan to explore more sophis-
ticated methods towards beating the benchmark set in this paper.
Lastly our research will be targeted not only towards identifying
universal patterns of the di�erent driver’s states but also towards
detecting personalized features that are associated with alertness,
drowsiness and distraction.

Overall, this work indicates that developing a multimodal dri-
ver’s alertness system can aid in improving the quality of driving
and road safety thus, being potentially very useful towards reducing
the number of related accidents.
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