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Abstract

Physiological signals provide a reliable method to iden-
tify the physical and mental state of a person at any given
point in time. Multiple techniques are used to extract physi-
ological signals from the human body. However, these tech-
niques require contact and cooperation of the individual as
well as human effort for connecting the devices and col-
lecting the needed measurement. Thermal imaging pro-
vides a non-contact approach for acquiring these signals.
New applications are exploring ways to utilize physiologi-
cal features extracted from thermal images to detect subtle
changes in human physiology. In this paper, we provide a
review of applications, which propose a variety of innova-
tive techniques to model human behavior by analyzing ther-
mal videos.

1. Introduction

In recent years there has been a growing interest in de-

veloping automated systems that are capable of monitoring

human physiological responses in order to provide a real-

time assessment of a person’s general health and well-being.

Such measurements include heart rate, temperature, respi-

ration rate, among other skin responses. With the proper

assessment, these physiological measurements can identify

the physical and mental state of a person. In addition, the

fact that the human body often exhibits unique physiolog-

ical characteristics in response to external stimuli, made it

possible to detect and predict a person’s behavior or psycho-

logical state, such as emotions, mood, stress level, distrac-

tion, and deceit. Hence, different studies are exploring the

feasibility of incorporating physiological monitoring into a

wide array of different applications.

Vital sign monitoring systems generally monitor blood

glucose level, blood pressure, pulse rate, electrocardiograph

patterns, respiration rate, and temperature [27]. Certain vi-

tal signs are thought to be better indicators of specific phys-

iological abnormalities than others. Researchers explored

ways to harness physiological data for applications in a

number of areas, such as health care, sports, military, and

surveillance. Moreover, physiological monitoring may be

more effective at diagnosing certain disorders that are diffi-

cult to diagnose from external symptoms alone.

The skin is a vital organ that receives signals from con-

trol centers in the brain to maintain the body’s core temper-

ature through a process called thermoregulation [5]. Physi-

ological thermoregulation in humans comprises changes in

heat dissipation (sweating) and heat generation (shivering)

in response to various internal and external thermal stimuli

[4]. Thermal imaging utilizes this principle to detect natu-

ral thermal radiation emitted by the skin, which can be in-

terpreted in terms of physiological changes [12]. Skin con-

ductance is another physiological measurement that refers

to the varying electrical properties of the skin in response to

sweat secreted from eccrine sweat glands [25]. The skin be-

comes more conductive as sweat accumulates. This process

reflects the arousal of the sympathetic autonomic nervous

system which accompanies various psychological processes

[7].

While the usage of thermal images to detect peripheral

skin temperature is apparent, recent research has shown in-

teresting potential of using thermal images to extract mul-

tiple physiological signals from the human body. In this

paper, we provide a survey of applications that can benefit

from these techniques.

2 Deception Detection

Polygraph testing remains the standard tool used by law

enforcement in the U.S. to verify whether or not a subject

is telling the truth during questioning. Polygraph tests mon-

itor the subject’s blood volume pulse, respiratory changes,
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and electrodermal activity. Employing polygraph tests was

shown to be unreliable in many cases as it requires deci-

sions from human experts, which is subject to bias and er-

ror [6, 8]. Reports dating back three decades indicated that

polygraph results were false one third of the time [15].

Hence, research was conducted to find alternatives, in-

cluding the usage of thermal imaging as a mean for decep-

tion detection. Most experiments in this field begin by es-

tablishing the baseline physiological characteristics of the

subject prior to the interview. This generally involves ask-

ing the subject a series of control questions designed to

elicit a particular physiological response.

However, research suggests that guilty subjects who are

trained on using physical or mental countermeasures are

able to defeat polygraph tests by corrupting the initial base-

line measurements [11]. Hence, additional information col-

lected from thermal images had the potential to improve the

reliability of deception detection models.

In [17], the authors described a method for classifying a

person’s responses as deceitful or truthful based on changes

in blood flow rate as observed from thermal images of the

person’s face. In this method, raw thermal data was trans-

formed into blood flow rate data using a number of different

processing techniques, such as segmentation algorithms and

heat transfer modeling. Although different regions might

be used, [18] found that the periorbital region (area around

the eyes) carried the most significant discriminating power.

They observed that the slope of the periorbital blood flow

rate as a function of time grows steeper during a deceptive

answer.

The periorbital region of the face was analyzed in [22]

to perform automated deception detection. The proposed

approach tracked two eye corner regions, concatenated the

Region of Interest (ROI) data across all frames within the

response time-line, and finally applied Principal Compo-

nent Analysis (PCA) to obtain thermal features. One unique

aspect of their research was the fact that they compared

the predictive ability of a within-person classification to a

between-person classification. A between-person approach

was shown to have poor predictive performance. The au-

thors explained that a leave-one-person-out cross validation

method assumed that behavior and physiological responses

are common traits among people of various ages, genders,

culture, etc. On the other hand, the within-person approach

trained a classifier specific to each subject using the afore-

mentioned baseline measurement as training data. Their

model was able to achieve an overall accuracy of 87% using

a k-nearest neighbor classifier.

More recent studies proposed the use of fusion models

that incorporated features from more than one modality [2].

The authors analyzed thermal videos, facial expressions,

and other visual features to identify areas of the face that

are the most indicative of deceptive behavior. Their ap-

proach generated feature vectors by transforming each ROI

into a thermal map represented by the Hue Saturation Val-

ues pixel representation. In contrast with previous work by

Pavlidis, they found that thermal features extracted from the

forehead region were the most effective for discriminating

between truth and deceit. This may be attributed to the dif-

ferent methods that were used to extract thermal features;

heat transfer modeling versus thermal mapping.

3 Emotion Recognition

Several studies in the literature have explored the use

of thermal imaging for classifying human emotions. The

study of affect states and arousal level is an emerging

topic of interest in both neuroscience and affective com-

puting. However, there are conflicting theories that attempt

to explain how neurophysiological systems activate differ-

ent emotional states. Recent studies in affective comput-

ing have designed classification methods based on a rela-

tively recent idea in neuroscience known as the circumplex

model. ”The circumplex model of affect proposes that all

affective states arise from cognitive interpretations of core

neural sensations that are the product of two independent

neurophysiological systems” [20]. This model is based on

the idea that emotional states are not discrete categories but

rather a result of varying degrees of arousal and valence.

A binary classifier was designed in [16] to distinguish

baseline thermal states from affective states. Facial ther-

mal infrared data as well as contact-based blood volume

pulse and respiration rate were collected while subjects

were shown visual stimuli designed to elicit different af-

fective states. Arousal and valence levels during stimulus

onset were measured using the International Affective Pic-

ture System. The Periorbital, supraorbital and nasal regions

of the face were selected and tracked as ROIs. Wavelet anal-

ysis was used to extract features and remove noise from the

thermal infrared data. Finally, a genetic algorithm was used

to select optimal features to be used for training a linear dis-

criminate analysis classifier. This classification procedure

was able to achieve accuracy of 80% and 75% in classify-

ing high and low levels of arousal and valence from base-

line, respectively.

Other studies took advantage of the fact that different fa-

cial expressions are generally associated with certain emo-

tional states. Research has demonstrated that thermal cues

may provide a more effective means for recognizing fa-

cial expressions compared to visual cues. In [26], a ther-

mal based facial expression classifier outperformed a visual

based classifier due to the fact that thermal images are un-

affected by variations in illumination and skin complexion.

[14] leveraged the findings of these two studies to de-

velop a unique classification algorithm. Instead of using a

binary classifier, they opted to use a clustering algorithm
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to model affective states as clusters in a multi-affect and

multi-arousal discriminant space. The thermal images were

analyzed using accompanying visual images to find points

along major facial muscles that displayed the greatest ther-

mal variation. Previous research explained this method for

acquiring Facial Thermal Feature Points [13]. PCA and

Linear Discriminate Analysis were used to perform dimen-

sionality reduction and feature selection. The resulting fa-

cial thermal vectors were used to construct a smaller feature

space. The authors used the distance between the optimal

feature vectors and the centroids of arousal levels for affect

assessment. Their thermal expression recognition system

was able to correctly classify approximately 96% of happy

and sad expressions.

4 Facial Recognition

Facial recognition technology has advanced rapidly

within the last decade. In fact, many of today’s smart

phones offer features that rely on facial recognition and

tracking software. However, most of the research in the field

has focused on detecting and recognizing faces in the visi-

ble spectrum. Visual facial recognition systems read visible

light reflected off the surface of the skin to track facial fea-

tures. As a result, these systems usually do not perform

well in variable lighting conditions. Facial recognition in

the thermal infrared spectrum has been proposed as an al-

ternative to overcome these problems. Thermal imaging is

insensitive to illumination changes and capable of detecting

unique physiological characteristics beneath the skin.

The forehead region is useful for facial recognition since

it is a uniform surface that overlays several superficial ar-

terial branches [10]. There are a number of methods for

segmenting the thermal imprint of these supraorbital ves-

sels [29]. The vascular mapping can be used to classify the

subject’s face and to track the subject’s movements [9]. The

authors in [3] proposed a method for thermal facial recog-

nition based on the fact that the contrast between the super-

ficial vasculature and the surrounding tissue is a physiolog-

ical characteristic that does not vary over time.

5 Stress Detection

“Following the perception of an acute stressful event,

there is a cascade of changes in the nervous, cardiovascu-

lar, endocrine, and immune systems” [23]. Furthermore,

clinical studies have demonstrated relationships between

psycho-social stressors and diseases, such as cardiovascular

disease, upper respiratory diseases, immunodeficiency and

depression [23]. Physiological responses to stress may in-

clude an increase in blood pressure, redirected blood flow,

and vasoconstriction as well as dilated pupils, accelerated

heart rate, paling or flushing in the face, and an increase in

perspiration [28].

Research has successfully demonstrated the use of ther-

mal imaging to detect the onset of stress from observing

physiological changes in subjects’ faces. Different activities

produce distinct facial thermal patterns. Thermal videos of

anxious subjects who were exposed to stressful situations

revealed an increase in temperature around the eyes and

forehead as a result of heat dissipation caused by increased

blood flow [19, 21].

Recent studies have classified these thermal physiolog-

ical markers to develop automated stress detection algo-

rithms. [24] analyzed spatio-temporal facial patterns in

videos captured from both the thermal (TS) and visible (VS)

spectrums. Subjects were recorded watching stressful and

calming video clips. The authors extracted features from

the videos using a technique known as local binary pat-

terns on three orthogonal planes (LBP-TOP). This method

was specifically used to analyze the temporal dynamics of

muscle movements by extracting features, which incorpo-

rated appearance and motion. In addition, they proposed

a new feature set to model thermal images, which cap-

tured normalized dynamic thermal patterns in histograms

(HDTP). The goal of this method is to enhance participant-

independent recognition of symptoms for stress and to re-

duce individual bias. The HDTP features extracted from

the thermal videos produced better stress recognition rates

compared to the LBP-TOP features used for binary classifi-

cation. A fusion of HDTP and LBP-TOP features extracted

from TS and VS video, respectively, achieved the best re-

sults with a recognition rate of 72%.

In [1], contact-based physiological measures and fa-

cial thermal images were used to train a stress detection

classifier. Ground truth measurements were based on the

perceived stress of subjects in stressful situations. Ther-

mal features were extracted using a variety of methods

to perform face segmentation, tracking, and transforma-

tion. Facial bounding boxes were manually defined, the

Shi-Tomasai corner detection algorithm was used to iden-

tify discriminating points within the face. A fast Kanade-

Lucas-Tomasi (KLT) tracking algorithm was used to track

the points throughout the entire response. The background

in the image was discarded using image binarization and

cropping. Lastly, features were extracted by creating a ther-

mal map in which hue saturation value (HSV) colors rep-

resented temperature values. HSV values were organized

in a histogram and normalized to form a probability distri-

bution over all bins. Moreover, the thermal features were

integrated with the contact-based physiological features in-

cluding the heart rate, respiration rate, skin temperature, and

skin conductance. They trained a decision tree classifier us-

ing their features, which was able to detect stress with an

accuracy of 75%.
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6. Conclusion

The literature suggests that the skin’s unique role in ther-

moregulation make it a suitable channel for detecting dis-

tinct physical and psychological responses to external stim-

uli. A number of studies presented in this paper have pro-

posed innovative ways to use thermal imaging and physio-

logical measures to develop practical solutions to real-world

problems.

We wish to build upon the previous work in order to de-

velop a fully non-contact approach for extracting high res-

olution physiological features from thermal videos, namely

heart rate, respiration rate, skin conductance and skin tem-

perature. Our goal is to design a multimodal feature ex-

traction approach to aid in the development of future health

monitoring systems.
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