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ABSTRACT
This paper provides a new approach to the automatic detection of

thermal discomfort. We see this research as a step toward the de-

velopment of an intelligent climate control system that does not

require any explicit input from the users. We introduce a novel

dataset that simulates different thermal comfort/discomfort levels

and we provide a complete analysis of different physiological sig-

nals and their capability of discriminating between these levels.

Our approach is successful in detecting the thermal sensation of

human subjects and it is expected to enable innovative adaptive

control scenarios for enclosed environments as well as a significant

reduction in energy consumption.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

Keywords
thermal discomfort; physiological signals

1. INTRODUCTION
Different studies reported that the air conditioning inside vehi-

cles consumes up to 30% of the fuel in conventional internal com-

bustion engine vehicles, and can reduce the range of the vehicle’s

battery by up to 40% in electric cars [15]. Studies suggested that

raising a vehicle’s temperature by four degrees Celsius can save

approximately 22% of the compressor power leading to a 13% in-

crease in the coefficient of performance [14]. Accordingly, the

first step in achieving the trade-off between thermal comfort and

reduced energy consumption is the automated detection of the ther-

mal sensation levels of individuals, in order to automatically adjust

the temperatures using a climate control system and hence retain a

thermal comfort sensation.
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Different personal and environmental factors control the thermal

sensation of individuals. Personal factors include the metabolic

rate and clothing insulation, while environmental factors include

air temperature, mean radiant temperature, air velocity, and relative

humidity. However, recent research showed a significant difference

between human thermal sensation in buildings and in vehicles [13,

3]. In particular, other factors contribute to thermal discomfort in

vehicles such as the effect of solar radiation and poor interior insu-

lation.

With the massive developments in vehicle technologies, compa-

nies have started to develop seat belts that are capable of detect-

ing certain physiological measurements such as the heart rate and

respiration rate of the occupants, for purposes such as detecting

a driver’s drowsiness. Hence, these measurements can eventually

play a crucial role in real-time detection of the individuals thermal

discomfort levels.

This paper proposes an approach to automatically detect differ-

ent levels of an individual’s thermal comfort and discomfort, paving

the way of developing a completely automated climate control sys-

tem. In particular, this paper makes four main contributions. First,

it introduces a novel dataset collected from 50 subjects including

simulations of comfort, cold discomfort, and hot discomfort using

self-reported levels of discomfort with the Predicted Mean Vote

(PMV) model. In order to have full control of the thermal envi-

ronmental conditions, an insulating enclosure was built that was

connected to a heat pump/air conditioning unit. Second, we utilize

four different physiological sensors to collect measurements from

the subjects. Third, we provide an analysis of the specific type of

physiological measurements that is most capable of indicating the

thermal sensation of the subjects. Finally, we develop an approach

that detects different levels of cold discomfort as well as different

levels of hot discomfort separately.

2. RELATED WORK
Methods have been proposed to detect thermal discomfort in

indoor environments. Freire et al.[5] developed two control al-

gorithms using only-one-actuator system in order to achieve en-

ergy consumption minimization while maintaining the indoor ther-

mal comfort. Homod et al. [8] combined a fuzzy model with a

Gauss-Newton method for nonlinear regression algorithm in order

to effectively control indoor thermal comfort using the PMV/PPD

model. Hamdy et al. [7] analyzed the energy usage and the size

of the cooling equipment needed to achieve thermal comfort in an
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office building. Haldi and Robinson [6] studied the action of occu-

pants sensing thermal discomfort in an indoor environment using

probabilistic modeling. Huizenga et al. [10] observed high rates of

thermal discomfort occurring in buildings by surveying over 30,000

occupants in 215 buildings.

More recently, detecting thermal discomfort in vehicles gained

more interest. Simion et al. [13] analyzed the personal and envi-

ronmental factors that affect the discomfort sensation in vehicles.

Studies showed that the discomfort sensation in vehicles differs

from buildings as it includes other factors such as the effect of so-

lar radiation, poor interior insulation, and the non-uniformity of the

average radiant temperature [3]. Another study analyzed the vehi-

cle thermal discomfort parameters in order to improve the detection

methods and reported the inside temperature and relative air humid-

ity as the main contributors to thermal sensation in vehicles [12].

Physiological signals were used to analyze the human body re-

sponse to thermal discomfort. Karjalainen [11] analyzed the effect

of temperature and skin conductance as indicators of human ther-

mal response. Other measurements such as blood flow plays also

a critical role in heat transfer between the body core and the skin.

In hot weather, vasodilation occurs, which results in increasing the

width of the blood vessels. On the other hand vasoconstriction oc-

curs in cold weather resulting in narrowing the blood vessels in

the body to decrease the blood flow and keep the heat. Hoppe [9]

showed that adapting thermally to hot weather is faster than cold

weather.

Multimodal sensing had been recently used to detect thermal

discomfort. Dang et al. [4] developed a navigation system that

chooses passes to reduce thermal discomfort for pedestrians. A

preliminary study showed the potential of combining thermal imag-

ing with certain body signals in improving discomfort detection

rates [2].

3. DATASET

3.1 Subjects
Our dataset consists of recordings collected from 50 volunteer-

ing students and adults from the University of Michigan. The sub-

jects included 32 males and 18 females, came from different ethnic

backgrounds, and had an age range between 18 and 60.

3.2 Devices
We employed four bio-sensors to collect physiological responses,

namely blood volume pulse (BVP sensor), skin conductance (SC

sensor), skin temperature (ST sensor), and abdominal respiration

(BR sensor). Two skin conductance electrodes were placed on the

second and third fingers, whereas a skin temperature and blood vol-

ume pulse sensors were placed on the small and index fingers, re-

spectively. The respiration sensor was placed comfortably around

the thoracic region. A computer was used to collect the signals

from the sensors through a multimodal encoder. The physiological

measurements were collected using Biograph Infinity Physiology

suite.

1

Thermal cameras were also used to capture videos for the

subjects and will be processed in future work.

3.3 Experimental Procedure
In order to simulate a small enclosed environment similar to that

in vehicles, we built an enclosure at the University of Michigan

with insulating material for complete isolation from the room tem-

perature. The enclosure was connected to a heat pump in order to

blow hot and cold air. It also had a slit to allow the connection of

the physiological sensors and the recording of the thermal cameras.

A picture of this system can be seen in Figure 1.

1

http://www.thoughttechnology.com/physsuite.htm

Figure 1: The experimental system including an insulating en-
closure, physiological sensors, and thermal cameras.

The subjects were asked to sit comfortably on a chair in the en-

closure and the four physiological sensors were connected. The

data collection process encompassed three stages.

3.3.1 Comfort
The subjects were asked to stay in the building where the exper-

iments were conducted for a period of time, to adapt to the indoor

temperature and feel thermally comfortable. Then they were asked

to sit in the enclosure and stay inside till the end of the experiments.

The subjects were then recorded for four minutes in this state.

3.3.2 Cold Discomfort
In this stage, cold air was blown into the enclosure using the

heat pump and a fan while the subjects were sitting inside. This

process was continued for approximately 20 minutes until the en-

closure temperature reached approximately 61F. The subjects were

then recorded for four minutes with the cold air continuously blow-

ing.

3.3.3 Hot Discomfort
In this stage, hot air was blown into the enclosure using both

the heat pump and an electric heater while the subjects were sitting

inside. This process continued for approximately 10 minutes until

the enclosure temperature exceeded 95F. The subjects were again

recorded for four minutes with continuous blow of hot air.

3.3.4 Thermal Sensation Rating
To evaluate the comfort/discomfort level of the subjects, the Pre-

dicted Mean Vote/Predicted Percentage of Dissatisfied or PMV/PPD

model developed by Fanger [1] was used, which assumed steady

state conditions in an indoor environment. The PMV rates thermal

sensation of the subjects on a scale of (-3) for cold to (3) for hot.

The surveyed individuals choose a value on the thermal scale to

express their thermal sensation.

At each of the three stages, the subjects were asked to rate their

thermal sensation using the PMV scale. All the subjects rated the

comfort stage as “0", which represents the thermally neutral state

on the PMV scale. For cold discomfort, the subjects’ ratings ranged

from -1 to -3. Similarly for the hot stage, their ratings ranged from

1 to 3.

4. EXPERIMENTAL DISCUSSION

4.1 Feature Extraction
Physiological measurements were collected by processing raw

signals from each sensor. The Biograph Infiniti Physiology suite
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was used to obtain physiological assessments for heart rate from

the blood volume pulse (BVP), skin conductance (SC), respiration

rate (RR), and skin temperature (ST). These measurements were

obtained at the highest sampling rate available, which is 2048 sam-

ples per second. The physiological feature set consisted of raw

measurements and their statistical descriptors, including maximum

and minimum values, means, power means, standard deviations,

and mean amplitudes (epochs). In addition, we obtained features

derived from inter-beat intervals (IBI) measurements such as the

minimum and maximum amplitudes and their intervals. The final

set formed a total of 59 physiological features including 40 BVP

features, five SC features, seven RR features, five ST features, and

2 features extracted from the BVP and the RR sensors combined,

namely, the mean and heart rate max-min difference, which is a

measure of breath to heart rate variability.

2

4.2 Classification
A decision tree classifier was used to detect the comfort state as

well as different discomfort states of the subjects using a leave-

one-subject-out validation scheme. In this scheme all the three

instances of each subject were reserved for testing while all the

other instances were used for training in order to avoid any bias.

We report the overall accuracy as well as the recall of each class

and compare them to the baseline performance of random guess-

ing. We analyze whether the integration of features improves the

performance as well as the capability of each sensor in specifying

the thermal sensation of the subjects. We also use two different

classification schemes. First, we categorize the instances into three

classes, comfort, cold, and hot. Second, we categorize the data into

seven classes based on the reported ratings of each subject using

the PMV scale.

4.3 Experimental Results

Table 1: Overall accuracy as well as the recall of each of the
comfort, cold discomfort, and hot discomfort classes for the raw
data, individual physiological features, and all features com-
bined.

Baseline 4 Raw BVP SC RR ST All

Accuracy 33.3 74.7 53.3 39.3 32.0 76.0 72.0

Comfort 33.3 60.0 52.0 44.0 36.0 68.0 72.0

Cold 33.3 98.0 60.0 40.0 38.0 90.0 86.0

Hot 33.3 66.0 48.0 34.0 22.0 70.0 58.0

Table 1 lists the overall accuracy and the recall of the comfort,

cold discomfort, and hot discomfort classes as well as the base-

line performance, for the raw data, individual physiological sen-

sors features, and all features combined. The raw features consist

of the four raw physiological measurements directly collected from

the sensors. The individual physiological sensors features represent

all the features extracted from each sensor separately as specified

earlier. All features combined represent all the 59 physiological

features. The -1, -2, and -3 ratings were combined into the cold

class and the 1, 2, and 3 ratings were combined into the hot class.

The table shows that the skin temperature features achieve the

best overall accuracy. The heart rate features achieve the second

best performance among other sensors with a relative improvement

of 60.1% over the baseline. The four raw features and all the fea-

tures combined achieve a comparable accuracy as well to the skin

2

This set of 59 features includes the four raw features collected

directly from the sensors.

temperature features. The features provided by the three other sen-

sors did not perform as well especially the respiration rate features.

Interestingly, the best detected state is the cold discomfort reach-

ing 98% using the four raw features. This state also achieves an im-

proved performance with the skin temperature features and all the

features combined. The comfort and hot discomfort classes exhibit

close performance, which is less accurate than the cold discomfort

class.

Table 2: Overall accuracy as well as the recall of each of the
comfort, three cold discomfort, and three hot discomfort classes
for the raw data, individual physiological features, and all fea-
tures combined.

No. Baseline 4 Raw BVP SC RR ST All

Accuracy 33.3 44.2 31.3 19.0 28.6 47.6 46.3

Comfort 49 33.3 71.4 49.0 49.0 44.9 67.3 59.2

Cold -1 17 11.6 17.6 23.5 0.0 11.8 23.5 23.5

Cold -2 20 13.6 25.0 20.0 0.0 20.0 50.0 45.0

Cold -3 12 8.2 50.0 33.3 8.3 0.0 16.7 25.0

Hot 1 14 9.5 28.6 14.3 0.0 0.0 7.1 35.7

Hot 2 29 19.7 41.4 27.6 10.3 48.3 69.0 62.1

Hot 3 6 4.1 0.0 0.0 0.0 0.0 0.0 0.0

Table 2 lists the overall accuracy and the recall of the comfort,

the three cold discomfort, and the three hot discomfort classes for

the raw data, individual physiological sensors features, and all fea-

tures combined. The second column presents the number of in-

stances belonging to the corresponding class. It should be noted

that the specific cold and hot ratings for one of the subjects were

missing due to an error in collection and hence the results of this

table are for 49 subjects.

Similar to Table 1, the skin temperature sensor, the four raw

features, and all features combined achieve the best performance.

Overall, the majority of the results are above the baseline. On

the other hand, the skin conductance and respiration rate sensors

achieve poor performance in the majority of the cases.

In general the three cold classes exhibit improved performance

to the three hot discomfort classes. Hot 2 class achieves better per-

formance compared to the hot 1 and hot 3 classes. This could be

attributed to the unavailability of enough training instances for the

hot 3 class in particular.

Overall the table shows that our approach is capable of differ-

entiating between different levels of cold and thermal discomfort.

However, the system needs to be trained on additional instances for

each class for better separability.

In order to analyze the best performing set of features, as ob-

tained from the skin temperature sensor, as well as the reason for

the improved performance of the cold discomfort class compared to

the hot discomfort, Figure 2 shows the sorted average temperatures

in F collected from the skin temperature sensor throughout each

of three states of comfort, cold discomfort, and hot discomfort for

each of the 50 subjects. The figure provides some interesting ob-

servations. First, the cold discomfort curve is well separated from

the other curves. On the contrary, the hot discomfort and comfort

curves are very close. Second, some temperatures could result in

comfort sensation for certain individuals while resulting in hot sen-

sation for others. This can also be seen for a few subjects at the

higher end of the cold discomfort curve. Third, the human body

needs a much longer time to go from the comfort stage to the cold

discomfort state and needs approximately half that time to transfer
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Figure 2: Sorted average temperatures of the 50 subjects
through the comfort, cold discomfort, and hot discomfort
stages.

from the cold discomfort state to the hot discomfort state. This also

indicates that the human body has faster adaptation to heat.

5. CONCLUSION
In this paper, we presented our approach in automatically detect-

ing the thermal sensation of subjects in an enclosed environment

similar to that in vehicles. This is a step toward developing tech-

nologies that are capable of providing automated climate control

without any explicit input from the users.

We presented a novel dataset collected from 50 subjects as well

as an approach that utilized four different physiological sensors to

detect thermal discomfort. We analyzed the performance of each of

these sensors and found that the skin temperature sensor performed

the best followed by a combination of all the sensors. The respi-

ration rate sensor and the skin conductance sensor were not good

indicators of the thermal discomfort levels of the subjects. Further-

more, it was also shown that our approach was capable of detecting

different levels of cold discomfort and hot discomfort separately.

Interestingly, the cold discomfort was detected more reliably than

hot discomfort. This is due in part to the human body’s built in

thermoregulation mechanisms that, in a cold climate, can lower the

skin temperature as needed (to reduce heat loss while deploying

vasoconstriction) while it will keep its temperature nearly constant

when heated (the body’s temperature is controlled through sweat-

ing and evaporation when the outside temperature is above 37o C).

It was also observed that it took almost double the time to reaching

a certain level of cold discomfort compared to hot discomfort. This

could be explained using thermoregulation as well as the first law

of Thermodynamics. When the human body is being cooled the

energy that needs to be expelled from the body is higher due to the

metabolic heat production. When the body is heated the metabolic

heat does not need to be expelled. This can indicate that humans

adapt thermally to heat faster than cold.

There are three directions in improving this research in the fu-

ture. First, we expect improvement in performance as we extract

additional features from the thermal video recordings of the sub-

jects, and integrate them with the physiological sensors features.

Second, more instances are needed in order to train our system on

separating different levels of cold discomfort and hot discomfort.

Third, additional time needs to be added for the heat discomfort

stage in order to have reasonable separation from the comfort level,

taking also into consideration that the hot discomfort simulation

was conducted right after the cold discomfort.
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