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ABSTRACT
Multiple techniques are used to extract physiological signals from
the human body. These signals provide a reliable method to identify
the physical and mental state of a person at any given point in
time. However, these techniques require contact and cooperation
of the individual as well as human effort for connecting the devices
and collecting the needed measurement. Moreover, these methods
can be invasive, time-consuming, and infeasible in many cases.
Recent efforts have beenmade in order to find alternatives to extract
these measurements using non-contact and efficient techniques. In
this paper we provide a survey that explores different approaches
for extracting vital signs from thermal images as well as review
applications that could potentially leverage these techniques.
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1 INTRODUCTION
In recent years there has been a growing interest in developing auto-
mated systems that are capable of monitoring human physiological
responses in order to provide a real-time assessment of a person’s
general health and well-being. Such measurements include heart
rate, temperature, respiration rate, among other skin responses.
With the proper assessment, these physiological measurements can
identify the physical and mental state of a person. In addition, the
fact that the human body often exhibits unique physiological char-
acteristics in response to external stimuli, made it possible to detect
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and predict a person’s behavior or psychological state, such as emo-
tions, mood, stress level, distraction, and deceit. Hence, different
studies are exploring the feasibility of incorporating physiological
monitoring into a wide array of different applications.

However, there are limitations to the traditional methods and
devices used to collect physiological measurements, such as the
requirement to connect the devices and sensors to the human body.
Attaching these sensors can be time consuming, uncomfortable,
and impractical for certain applications. Devices such as ECG sen-
sors require electrodes to be attached to specific areas of the body.
These devices can cause discomfort and may require the presence of
trained personnel to set up the device. Other sensors may introduce
noise if leads do not have solid contact with the skin. Even worse,
some sensors may not provide reliable measurements outside of a
controlled environment. [23] designed a network for monitoring
patients’ vital signs during health emergencies. The authors noted
that exposure to cold temperatures restricts blood flow to the fin-
gers which can disrupt pulse oximeter readings collected from a
finger sensor. Therefore, new approaches are proposed to avoid
the usage of wearable sensors to collect such data. In particular,
thermal image processing has been proposed as a potential method
for acquiring physiological data.

Vital sign monitoring systems generally monitor blood glucose
level, blood pressure, pulse rate, electrocardiograph patterns, respi-
ration rate, and temperature [67]. Certain vital signs are thought
to be better indicators of specific physiological abnormalities than
others. Researchers explored ways to harness physiological data
for applications in a number of areas, such as health care, sports,
military, and surveillance. Moreover, physiological monitoring may
be more effective at diagnosing certain disorders that are difficult
to diagnose from external symptoms alone.

For instance, heart rate is useful in diagnosing cardiovascular
disease (CVD), which is a leading cause of death worldwide. In
particular, there is evidence linking resting heart rate to CVD risk
factors such as hypertension, obesity, family history and work
stress [60]. Another example can be seen in studies suggesting that
changes in the respiratory rate may be a more effective measure for
discriminating between stable patients and those that are at risk. In
fact, evidence suggests that an adult with a respiration rate of over
20 breaths per minute (bpm) is probably unhealthy, while an adult
with a respiration rate of over 24 bpms is likely to be critically ill
[17]. Irregular increases in respiration rates have been observed
in patients suffering from panic attacks and sleep bruxism (teeth
grinding) [33, 44]. Taking more than one vital sign into account
has also proven to be beneficial in diagnosing certain ailments.
There is evidence indicating that elevated heart and respiration
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rates observed immediately after trauma are acute predictors of
delayed post traumatic stress disorder [12].

Skin is another vital organ that receives signals from control cen-
ters in the brain to maintain the body’s core temperature through
a process called thermoregulation [18]. Physiological thermoregu-
lation in humans comprises changes in heat dissipation (sweating)
and heat generation (shivering) in response to various internal
and external thermal stimuli [15]. Thermal imaging utilizes this
principle to detect natural thermal radiation emitted by the skin,
which can be interpreted in terms of physiological changes [30].
Skin conductance is another physiological measurement that refers
to the varying electrical properties of the skin in response to sweat
secreted from eccrine sweat glands [61]. The skin becomes more
conductive as sweat accumulates. This process reflects the arousal
of the sympathetic autonomic nervous system which accompanies
various psychological processes [21].

While the usage of thermal images to detect peripheral skin
temperature is apparent, recent research has shown interesting
potential of using thermal images to extract multiple physiological
signals from the human body. In this paper, we provide a survey of
the approaches proposed for that purpose as well as a number of
applications that can benefit from these techniques.

2 EXTRACTING PHYSIOLOGICAL FEATURES
This section presents different methods for extracting heart rate, res-
piratory rate, skin temperature, and skin conductance from thermal
videos. Many of these techniques use a procedure called Eulerian
Video Magnification (EVM), which can reveal hidden information
by magnifying subtle color changes and imperceptible motions
using spatio-temporal processing [65]. This process can indicate
subtle variations in the blood flow through the face.

2.1 Heart Rate
Several studies have proposed methodologies to extract heart rate
from thermal images by tracking superficial blood vessels on the
face. Blood flow regulates skin temperature due to heat exchange
between vessels and the surrounding tissue. These changes in skin
temperature are most prominent along superficial blood vessels.
Extracting the blood vessels from the face is often challenging due
to the low contrast between the edges of the blood vessels and the
surrounding facial tissue. This is a result of heat diffusion, which
creates a smooth gradient temperature between hot and cold areas.
Fortunately, there are several methods for segmenting blood vessels
from the face to create what is known as a vascular map. Figure 1
demonstrates one such example using a technique called white top
hat segmentation. There are two forms of top hat segmentation:
white top segmentation enhances bright objects and black top hat
segmentation enhances dark objects. White top segmentation is
effective for enhancing the ridge-like structures of the blood vessels,
which are represented by hot or bright areas in the image [13].

The thermal signal detected along a blood vessel presents a
composite signal that includes extraneous physiological and en-
vironmental signals in addition to the pulse [24]. [58] proposed a
method to extract the pulse by applying a Fast Fourier Transform
(FFT) to several points along the blood vessel in order to isolate the
thermal propagation component. They followed this by using an

Figure 1: Example of vascular mapping extraction.
(a) Original segmented image, (b) Anisotropically diffused
image and (c) Blood vessels extracted using white top hat
segmentation. Figure from [13].

adaptive estimation function to quantify the pulse based on current
and past measurements. The authors were able to achieve an overall
accuracy of 92.1% based on ground truth measurements collected
from a piezoelectric pulse transducer.

In [25], the authors introduced several improvements based on
previous work [13, 16, 26, 27, 57, 58]. First, they incorporated a
blood-perfusion model to more accurately create vascular maps,
segment the forehead, and enhance the raw thermal data. Second,
once they identified suitable blood vessels on the face, they applied
wavelet based filtering in place of FFT analysis. In the final step they
were able to automate the entire process by presenting a systematic
approach to select appropriate vessel segments from the vascular
map.

A slightly different approach was taken in [10] for extracting
heart rate by applying the EVMmethod to thermal videos. The goal
of their research was to remedy the fact that EVM may amplify
indiscriminate noise in addition to the true heart rate signal. In
their experiment, the subject wore a smart shirt (a shirt containing
various textile sensors) to capture the ECG signal while a thermal
camera recorded video of the subject. They applied two passes
of EVM. The first pass applied a wide band pass filter with a low
amplification factor to identify the region of interest (ROI) most
likely to reveal the true heart rate. In this case, the subject’s chest
was defined as the region of interest. The second pass applied a
narrow band pass filter with a high amplification factor to the signal
acquired from the ROI. Figure 2 reveals that the resulting signal
was highly correlated with the true heart rate signal collected from
the smart shirt.

2.2 Respiration Rate
Many methods have been proposed to extract respiration rate from
thermal videos using different combinations of image processing
and facial tracking techniques. Figure 3 depicts a common pro-
cedure for extracting physiological features from facial thermal
images. This begins with image correction and enhancement in
order to make certain features more distinguishable. Examples
of image enhancement techniques were briefly discussed in the
previous section. A facial detection algorithm is often employed
to segment the face from the background image. Once the face
has been isolated, regions of interest (ROI) are defined in order
to focus on particular areas of the face that are known to display
the desired thermal characteristics. Finally, a variety of image pro-
cessing techniques are applied to the ROI in an attempt to find a
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Figure 2: Thermal video ROI mean intensity signal (EVM
bandpass filter 0.75 to 1 Hz) versus ECG signal. Figure from
[10].

correlation between the temporal features within the thermal and
physiological domains. [11] followed this procedure to compare
temperature-based methods to motion-based methods for extract-
ing respiration rate from thermal videos. The temperature-based
method employed segmentation-based image processing and im-
age tracking algorithms to capture temperature variations over
time. They presented a variety of pre-processing methods includ-
ing image enhancement, noise removal, edge-detection, and facial
recognition, all of which were used to identify the subject’s nostrils
as the ROI. The respiration signal was then calculated as the mean
intensity within each ROI subjected to low pass filtering to remove
noise.

Figure 3: Image Processing Procedure. Figure from [11].

The motion-based analysis was carried out by simply calculating
the absolute differences between the first frame and all succeeding
frames, then once again applying a low pass filter to remove noise.
The temperature-based analysis worked better for detecting the
volume of airflow while the motion-based analysis provided better
results for detecting irregular breathing, such as hyperventilation
and the absence of breath. Neither method outperformed the other
in detecting the respiration rate for all breathing patterns. Hence,
the authors recommended the development of fusion algorithms
that could combine multiple methods for extracting respiration
rates from thermal videos.

[9] developed a facial tracking method to monitor respiration
rate in real time. One departure from previous work was the use
of an Otsu-based thresholding algorithm to segment the face from
the background image. Figure 4 demonstrates the performance of
various thresholding algorithms. Tsai’s method under-segmented
areas below the neck and even part of the face. Kapur’s method
performed slightly better but still under-segmented areas below the
face. The Otsu method proved to be the most effective and was even
efficient enough to allow for real time face detection and tracking.
Lastly, they applied noise filtering techniques and FFT to extract
the respiration rate from the ROI. This system was able to process
each frame in 40ms, making the system feasible for deployment in
real-time applications. Other studies followed a similar procedure
to extract the respiration rate using different methods to perform
noise removal and signal processing. Additional methodologies for
extracting the respiration signal include clustering and harmonic
analysis [66], wavelet analysis [20] and high pass filtering [35].

Figure 4: A comparison of thresholdingmethods (a) Kapur’s,
(b) Tsai’s and (c) Otsu’s. Figure from [9].

2.3 Skin Temperature
Body temperature depends on core temperature and skin tempera-
ture. Generally speaking, core temperature is the temperature of
the blood in circulation, which is regulated by the brain, whereas
skin temperature is primarily influenced by blood flow and envi-
ronmental conditions [36]. Heat stress is a condition in which skin
blood flow increases, followed by a rise in skin temperature, which
releases heat from the body. Cold stress describes the opposite effect
in which skin blood flow and temperature decrease, actively con-
serving heat in the body. This is the process by which the human
body is able to maintain a constant core temperature. Modern high
resolution thermal cameras have given researchers the ability to
observe physiological thermal regulatory response in real time.

A significant variation in body temperature is often an indication
of illness such as fever or hypothermia. In the interest of preventing
the spread of disease, several studies have explored the feasibility of
designing fever-based detection systems for use in airports andmass
transits [41, 56]. The literature also discusses the many challenges
involved in designing such a system. As of writing, the only reliable
way to acquire an accurate core temperature reading is to measure
temperature from the rectum or esophagus [39]. In spite of this,
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several studies have reported the inner corners of the eyes to be
the most suitable area for fever detection [42].

There is also a desire to better understand the relationship be-
tween thermoregulation and athletic performance in sportsmedicine.
[59] recorded thermal videos of athletes running on a treadmill as
well as their resting states before and after the exercise. Surprisingly,
the skin temperature of the athletes began to decline immediately
upon starting to run even at low speeds. A continuous increase in
exercise intensity caused the skin temperature to decrease even
further. On the other hand, thermal images of the athletes during
motionless recovery revealed a rapid increase in skin temperature
as well as the appearance of hyper-thermal spots as shown in Figure
5. The hyper-thermal spots are most likely a sign of vasodilation
caused by a reduction of warm blood flow to active muscles. These
findings are supported by the results of previous work done by [40],
in which the skin temperature of trained and untrained subjects
was recorded during exercise. Their results revealed that the mini-
mal skin temperature of trained subjects was significantly lower
than those of untrained subjects when they stopped exercising.

Figure 5: Infrared thermal images of the anterior body dur-
ing graded load exercise.
From left to right: before exercise, during 15min exercise,
and immediately after exercise. Figure from [59].

Thermal images clearly reveal variable amounts of heat radi-
ating from different areas of the human body during periods of
rest and physical labor. However, research shows little variation
in facial skin temperature in response to cold stimuli and corre-
sponding changes in core temperature. In [29], subject’s skin and
core body temperatures were measured using thermocouples and
an ingestible thermometer pill. When the subjects were exposed
to a cold environment, skin temperatures of the hands and feet
decreased substantially while the forehead remained reasonably
constant. This poses a difficulty for applications that hope to extract
body temperature from thermal facial images alone.

2.4 Skin Conductance
To the best of our knowledge, limited experiments have been con-
ducted to extract skin conductance via thermal imaging. Electro-
dermal activity is usually described in terms of tonic and phasic
components. The tonic component of skin conductance is the ab-
solute level of conductance at a given moment in the absence of
phasic response. Phasic components are defined as decreases in
resistance, which are superimposed on the tonic component [18].
Many papers will refer to the tonic and phasic components as the

skin conductance level and skin conductance response, respectively.
One such study has explored the idea of extracting the galvanic
skin response signal strictly from thermal images. [55] measured
three areas for sympathetic responses, which were the periorbital
(area around the eyes), supraorbital (forehead), and maxillary (jaw)
regions. For the ground truth measurements, the authors collected
data from GSR and thermistor sensors attached to the palm, given
that sweat gland activation is considered to be strongest in the
palm during periods of arousal. A Laplace distribution was then
used to model the GSR signal in order to fit the exponential fluc-
tuations that occur during arousal states. Moreover, the authors
used wavelets to analyze the thermal and GSR signals at different
frequency scales without loss of time information. They concluded
that the maxillary channel contains enough information to detect
sympathetic response nearly as well as the GSR channel measured
from the palm.

In some cases the wavelets of the GSR and periorbital signals
displayed nearly identical response timing and overall trend. How-
ever, precise estimation is difficult due to residual noise caused by
errors in tracking and segmentation. [34] proposed a technique for
measuring eccrine sweat gland activity from thermal images by
counting the number of active pores on the surface of the skin on
subjects’ fingers and faces. They designed an algorithm to iden-
tify active pores within a predefined ROI using a matched filtering
technique and a 7 x 7 pixel template representing an active pore.
ROIs on both the fingers and face were manually defined to only
include relevant skin surfaces. Hence, regions of the face containing
features such as hair, eyes, nose, and mouth were excluded in order
to reduce the false-positive detection rate. The results revealed that
pore activation response (PAR) on the face was consistent with
PARs from the fingers. Furthermore, the highest levels of pore ac-
tivity on the face were observed on the lips, the nose, cheeks, brow
line, and forehead. Another interesting observation was that the
thermal profile of an activated pore was much larger than the size
of the actual pore.

3 APPLICATIONS
In this section, we review some of the applications that extracted
multiple features from thermal images in order to achieve their
goal. Most of these applications are related to modeling of human
behavior. Some of them integrated these features with contact-
based physiological measurements and, hence, they can potentially
benefit from the aforementioned techniques.

3.1 Deception Detection
Polygraph testing remains the standard tool used by law enforce-
ment in the U.S. to verify whether or not a subject is telling the truth
during questioning. Polygraph tests monitor the subject’s blood
volume pulse, respiratory changes, and electrodermal activity. Em-
ploying polygraph tests was shown to be unreliable in many cases
as it requires decisions from human experts, which is subject to
bias and error [19, 22]. Reports dating back three decades indicated
that polygraph results were false one third of the time [37].

Hence, research was conducted to find alternatives, including the
usage of thermal imaging as a mean for deception detection. Most
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experiments in this field begin by establishing the baseline physi-
ological characteristics of the subject prior to the interview. This
generally involves asking the subject a series of control questions
designed to elicit a particular physiological response. However,
research suggests that guilty subjects who are trained on using
physical or mental countermeasures are able to defeat polygraph
tests by corrupting the initial baseline measurements [28]. Hence,
additional information collected from thermal images have the
potential to improve the reliability of deception detection models.

In [45], a method was described for classifying a person’s re-
sponses as deceitful or truthful based on changes in blood flow
rate as observed from thermal images of the person’s face. In this
method, raw thermal data was transformed into blood flow rate
data using a number of different processing techniques, such as
segmentation algorithms and heat transfer modeling. Although dif-
ferent regions might be used, [46] found that the periorbital region
(area around the eyes) carried the most significant discriminating
power. They observed that the slope of the periorbital blood flow
rate as a function of time grows steeper during a deceptive answer.

Accuracy of thermal imaging as a lie detection tool in airport
screening was tested in [63]. Their results revealed that the skin
temperature of liars rose significantly during the interview, whereas,
the skin temperature of truth tellers remained constant. Baseline
measurements did not reveal any significant difference between
passengers whowere instructed to tell the truth and those whowere
instructed to lie. Therefore, the authors concluded that deception
detection systems based on skin temperature alone would not be
suitable for rapid screening of passengers at an airport.

[52] is another study that analyzed the periorbital region of the
face to perform automated deception detection. They tracked two
eye corner regions as shown in Figure 6, concatenated the ROI
data across all frames within the response time-line, and finally
applied principal component analysis to obtain thermal features.
One unique aspect of their research was the fact that they compared
the predictive ability of a within-person classification to a between-
person classification. A between-person approach was shown to
have poor predictive performance. The authors explain that a leave-
one-person-out cross validation method assumes that behavior
and physiological responses are common traits among people of
various ages, genders, culture, etc. On the other hand, the within-
person approach trains a classifier specific to each subject using
the aforementioned baseline measurement as training data. Their
model was able to achieve an overall accuracy of 87% using a k-
nearest neighbor classifier.

More recent studies propose the use of fusion models that incor-
porate features from more than one modality [1, 3–7, 14, 48, 49].
The authors analyzed thermal videos, facial expressions, and other
visual features to identify areas of the face that are the most indica-
tive of deceptive behavior. Their approach generated feature vectors
by transforming each ROI into a thermal map represented by the
Hue Saturation Values pixel representation. In contrast with previ-
ous work by Pavlidis, they found that thermal features extracted
from the forehead region were the most effective for discriminating
between truth and deceit. This may be attributed to the different
methods that were used to extract thermal features; heat transfer
modeling versus thermal mapping.

Figure 6: A thermal image of a participant’s face during ques-
tioning. The left and right eye corners were defined as re-
gions of interest for tracking. Figure from [52].

3.2 Emotion Recognition
Many studies in the literature have explored the use of thermal
imaging for classifying human emotions. The study of affect states
and arousal levels is an emerging topic of interest in both neuro-
science and affective computing. However, there are conflicting
theories that attempt to explain how nuerophysiological systems
activate different emotional states. Recent studies in affective com-
puting have designed classification methods based on a relatively
recent idea in nueroscience known as the circumplex model. ”The
circumplex model of affect proposes that all affective states arise
from cognitive interpretations of core neural sensations that are the
product of two independent neurophysiological systems” [50]. This
model is based on the idea that emotional states are not discrete
categories but rather a result of varying degrees of arousal and
valence as shown in Figure 7.

Figure 7: Two-dimensional model of valence and arousal.
Figure from [62].

[43] designed a binary classifier to distinguish baseline thermal
states from affective states. Facial thermal infrared data, blood
volume pulse, and respiration rate were recorded while subjects
were shown visual stimuli designed to elicit different affective states.
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Arousal and valence levels during stimulus onset were measured
using the International Affective Picture System. The Periorbital,
supraorbital, and nasal regions of the face were selected and tracked
as regions of interest. Wavelet analysis was used to extract features
and remove noise from the thermal infrared data. Finally, a genetic
algorithm was used to select optimal features to be used for training
a linear discriminate analysis classifier. This classification procedure
was able to achieve accuracies of 80% and 75% in classifying high
and low levels of arousal and valence from the baseline, respectively.

Other studies took advantage of the fact that different facial
expressions are generally associated with certain emotional states.
Research has demonstrated that thermal cuesmay provide amore ef-
fective means for recognizing facial expressions compared to visual
cues. In [64], a thermal-based facial expression classifier outper-
formed a visual based classifier due to the fact that thermal images
are unaffected by variations in illumination and skin complexion.

[32], leveraged the findings of these two studies to develop a
unique classification algorithm. Instead of using a binary classifier,
they chose to use a clustering algorithm to model affective states as
clusters in a multi-affect and multi-arousal discriminant space. The
thermal images were analyzed using accompanying visual images
to find points along major facial muscles that displayed the great-
est thermal variation. Previous research explains this method for
acquiring Facial Thermal Feature Points [31]. Principal Component
Analysis and Linear Discriminate Analysis were used to perform
dimensionality reduction and feature selection. The resulting facial
thermal vectors are used to construct a smaller feature space. The
authors used the distance between the optimal feature vectors and
the centroids of arousal levels for affect assessment. Their ther-
mal expression recognition system was able to correctly classify
approximately 96% of happy and sad expressions.

3.3 Stress Detection
“Following the perception of an acute stressful event, there is a
cascade of changes in the nervous, cardiovascular, endocrine, and
immune systems” [53]. Furthermore, clinical studies have demon-
strated relationships between psycho-social stressors and diseases,
such as cardiovascular disease, upper respiratory diseases, immun-
odeficiency and depression [38, 53]. Physiological responses to
stress may include an increase in blood pressure, redirected blood
flow, and vasoconstriction as well as dilated pupils, accelerated
heart rate, paling or flushing in the face, and an increase in perspi-
ration [68].

Research has successfully demonstrated the use of thermal imag-
ing to detect the onset of stress from observing physiological changes
in subjects’ faces. Different activities produce distinct facial thermal
patterns. Thermal videos of anxious subjects who were exposed to
stressful situations revealed an increase in temperature around the
eyes and forehead as a result of heat dissipation caused by increased
blood flow [47, 51].

Recent studies have classified these thermal physiological mark-
ers to develop automated stress detection algorithms. [54] analyzed
spatio-temporal facial patterns in videos captured from both the
thermal (TS) and visible (VS) spectrums. Subjects were recorded
watching stressful and calming video clips. The authors extracted
features from the videos using a technique known as local binary

patterns on three orthogonal planes (LBP-TOP). This method was
specifically used to analyze the temporal dynamics of muscle move-
ments by extracting features, which incorporated appearance and
motion. In addition, they proposed a new feature set to model
thermal images, which captured normalized dynamic thermal pat-
terns in histograms (HDTP). The goal of this method is to enhance
participant-independent recognition of symptoms for stress and
to reduce individual bias. The HDTP features extracted from the
thermal videos produced better stress recognition rates compared
to the LBP-TOP features used for binary classification. A fusion
of HDTP and LBP-TOP features extracted from TS and VS video,
respectively, achieved the best results with a recognition rate of
72%.

In [2], contact-based physiological measures and facial ther-
mal images were used to train a stress detection classifier. Ground
truth measurements were based on the perceived stress of subjects
in stressful situations. Thermal features were extracted using a
variety of methods to perform face segmentation, tracking, and
transformation. Facial bounding boxes were manually defined, the
Shi-Tomasai corner detection algorithm was used to identify dis-
criminating points within the face. A fast Kanade-Lucas-Tomasi
(KLT) tracking algorithm was used to track the points throughout
the entire response. The background in the image was discarded us-
ing image binarization and cropping. Lastly, features were extracted
by creating a thermal map in which hue saturation value (HSV) col-
ors represented temperature values. HSV values were organized in
a histogram and normalized to form a probability distribution over
all bins. Moreover, the thermal features were integrated with the
contact-based physiological features including the heart rate, respi-
ration rate, skin temperature, and skin conductance. They trained
a decision tree classifier using their features, which was able to
detect stress with an accuracy of 75%.

4 OUR SUGGESTED APPROACH
The research presented throughout this paper has laid the ground-
work for designing applications to extract and analyze physiological
data contained in thermal facial images. We wish to build upon
our previous work [2, 3, 7, 8] in order to develop a non-contact
approach for extracting high resolution physiological features from
thermal videos, namely heart rate, respiration rate, skin conduc-
tance and skin temperature. These features can be integrated with
additional thermal features to develop reliable non-contact classifi-
cation systems. In particular, our goal is to design a multi-modal
feature extraction system to aid in the development of non-contact
health monitoring applications.

5 CONCLUSION
There are numerous benefits associated with the use of thermal
imaging for health monitoring and modeling of human behavior.
Recording thermal video is far more convenient compared to at-
taching multiple sensors to the body. Contact-based sensors and
electrodes attached to the body may cause discomfort, which can
alter the subject’s physiological state. Thermal cameras, on the the
other hand, are unobtrusive and therefore less likely to influence
the subject or introduce bias. Moreover, thermal cameras can po-
tentially screen people in seconds compared to the time-consuming
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task of outfitting someone with an array of sensors. Modern tech-
nology is facilitating the development of real-time thermal imaging
systems that are sensitive to minute variations in skin temperature.

The literature suggests that the skin’s unique role in thermoregu-
lation make it a suitable channel for detecting distinct physical and
psychological responses to external stimuli. A number of studies
presented in this paper have proposed several methods for extract-
ing thermal features that are more or less consistent with physi-
ological signals collected from traditional contact-based sensors.
More comprehensive studies have explored possible ways to apply
these methods to develop practical solutions to real-world problems.
Future work will undoubtedly continue to find innovative solutions
to draw physiological insight from thermal videos.
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