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6.1 Introduction

Capsule endoscopy (CE) is a method used to visualize the entire small
intestine. It is a widely adopted procedure for diagnosing gastrointestinal
diseases including obscure bleeding, Crohn’s disease, gastric ulcers, and colon
cancer. The CE videos used in this research were produced with the Pillcam®

by Given Imaging. The imaging component of this system is a vitamin-sized
capsule that comprises a color CMOS camera, a battery, a light source, and a
wireless transmitter. The device captures two images per second for
approximately eight hours and generates approximately 55,000 color images
with a size of 256 � 256 pixels during the life of its usage.
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Reviewing CE videos to make diagnostic decisions is a tedious task and is
achieved by watching the video playback and marking suspicious frames and
anatomical landmarks. It usually takes more than one hour to annotate a full-
length video, and a typical mid-size hospital produces an average of twelve
CE videos per day.

Given the large amount of training data, computer algorithms are in great
demand to reduce the review time by identifying frames that contain signs of
lesion, bleeding, and polyps, as well as segment videos into gastrointestinal
sections. Many existing learning algorithms require all training data to be
present in memory to achieve the best generalization performance. Limited by
the computing power and memory size, it is usually difficult to implement
such a learning scheme. Incremental learning has great potential to
accommodate the inclusion of examples that become available over time or
represent a change of perception. The initial data set can be used to create a
model; when new data becomes available, it is integrated to update the
classifier. In practice, clinical videos are acquired over time. Furthermore,
knowledge of the visual appearance of the diseases in CE video changes over
time due to the relatively shorter practice time. It would be practical to build a
classifier based on initial data and revise the classifier as new examples arrive.

A key question of incremental methods is how to retain knowledge from the
training examples in each repetition to maximize the unbiased representation of
underlying data distribution. Retaining some key examples, e.g., support vectors
in a support vector machine (SVM), works well in cases where the existing
examples closely represent the topography of the class boundary. However, if a
new instance dramatically changes the topography and hence the decision
hyperplane, some previously removed examples could become themarginmover.

This chapter presents an incremental learning method that extends the
geometric SVM to multiclass classification with large training data. The
proposed method identifies important examples and models the data such that
when new examples become available, a classifier is built without revisiting all
of the past data available but with generalization accuracies, which are
comparable to those obtained in the batch-learning setting.

6.2 Related Work

6.2.1 Related work on CE video analysis for automatic
object detection

Among efforts in computer-aided CE video analysis, color and texture
features are used in many applications,24 particularly for detecting heteroge-
neous objects, e.g., ulcers and polyps.3,10,28,39 Many classification algorithms
have been applied to video analysis including neural networks,39 SVMs,16 and
thresholding. Despite improvements, many previous studies were evaluated
with a small number of examples, and to the best of our knowledge no
performance was reported with respect to the entire videos.
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Table 6.1 summarizes the characteristics of experimental data sets and
performances in recent related work on automatic detection using CE
videos. Despite the use of different features and classification methods, the
experimental data and performances vary greatly. Among these studies,
results in eight studies were generated from experiments using 1000
examples or less. Two studies used a moderately larger number of
examples. Compared to the number of frames available in a CE video
(approximately 50,000), however, the training data set size is small. Ideally,
if the training set is well selected and comprehensive, the classifier can
achieve satisfactory generalization performance. It is unclear if the formed
cohort represents the true data distribution. An important question awaits
investigation: “Given the relatively small number of positive examples from
CE videos, how does one train learning algorithms to achieve minimal false
negative detections?”

6.2.2 Related work on incremental learning using SVMs

Although a large number of training examples helps reduce the generalization
error, the learning process can become computationally expensive, if not
infeasible. Efficient and scalable approaches are needed that can modify the
knowledge structure in an incremental fashion without having to revisit all of
the previously processed data.

Attempts at an incremental SVM started by retaining the support vectors.
The method in Syed et al.38 keeps only the support vectors at each incremental
step. The model obtained via this strategy will be the same or very similar to
what would have been obtained by using all training examples. Mitra et al.32

used an error-driven technique in the incremental SVMs. In addition to the
support vectors, this method keeps a number of non-support-vector examples.
Given a trained SVM(t) at iteration t, the SVs of SVM(t) (along with a certain

Table 6.1 Experimental data and detection outcomes. “–” indicates not reported in the
paper. The sensitivity, specificity, and accuracy are in percentages.

Reported Studies Data Set Size Performance

Total Abnormal Normal Sen. Spe. Acc.

Kodogiannis and Boulougoura24 140 35 35 95.7
Kodogiannis and Lygouras25 140 35 35 97.1
Vilarino et al.39 400 100 300 95.5
Coimbra and Cunha10 1000 87
Lau and Correia26 1705 577 1128 88.3
Li and Meng27 60 30 30 65.2 82.5
Li and Meng28 400 200 200 91 93
Jung et al.18 2000 1000 1000 92.8 89.5
Barbosa et al.3 204 100 104 98.7 96.6
Karargyris and Bourbakis19 20 30 75 73.3
Karargyris and Bourbakis20 50 10 40 100 67.5
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number of correctly classified and misclassified instances) are used to train the
new model SVM(tþ1). Alternatively, Domeniconi and Gunopulos13 proposed
a method that keeps only the misclassified examples. When a given number of
misclassified examples is collected, the update occurs. The support vectors of
the last-trained SVM, along with the misclassified instances, are used as
training data to obtain the new model. The assumption of minimum change in
the hyperplane serves as the foundation of the previous methods.

Katagiri and Abe21 proposed using one-class SVMs to select support
vectors, which reduces the possibility of support vectors being deleted when
the hyperplane is rotated. A hypersphere is generated for each class, and
only the instances lying close to the boundary of the hypersphere are
retained as candidate support vectors for future updates. Although this
method handles the rotation of the decision boundary, the assumption of a
hypersphere to model data distribution is unrealistic in many real-world
applications.

To manage the space complexity and size of the representative data set,
Hernandez et al.14 employed a multiresolution approach. Agarwal et al.40

demonstrated that the concept of the span of support vectors can be used to
build a classifier that performs reasonably well while satisfying space and time
constraints, thus making it suitable for online learning. Mitra et al.33

presented probabilistic SVMs wherein the training set is refined by active
query from a pool of unlabeled data. Orabona et al.34 proposed an online
algorithm that approximately converges to the standard SVM solution each
time new examples are added. This method uses a set of linearly independent
observations and tries to project every new observation onto the set obtained
so far, thus reducing time and space requirements at a negligible loss of
accuracy. Proximal SVM36 employs a greedy search across the training data
to select the basis vectors of the classifier and tunes parameters automatically
using the simultaneous perturbation stochastic approximation after incre-
mental additions are made.

Instead of selecting training examples randomly, Chen et al.9 divided the
training set into groups using the k-means clustering algorithm. In active
query, a weight is assigned to each example according to its confidence, which
is calculated from the error upper bound of the SVM to indicate the closeness
of the current hyperplane to the optimal one.

Another key issue in incremental learning is to adapt to the nonstationary
underlying data distribution. Cauwenberghs and Poggio6 developed an
incremental and decremental SVM method that divides the training set into
three categories: the margin SVs, the error SVs (ones that violate the margin
but are not necessarily misclassified), and ignored vectors (ones within the
margin). When a new instance is misclassified, the SVM is updated.
Bookkeeping is used to categorize examples, the complexity of which is
O(n3) for each incremental example. A later work of Diehl and Cauwen-
berghs12 reduced the computational cost by using “leave-one-out” error
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estimation. Again, the methods assume that the hyperplane does not change
significantly.

Klinkenberg and Joachims23 proposed a method to handle drift in SVMs.
The drift represents changes to the underlying distribution of the data
collected over an extended period for learning tasks. The method maintains a
window to the training data stream and adjusts its size so that the estimated
generalization error is minimized. Shilton et al.37 addressed the sequentially
arriving data and parameter variation using a warm-start algorithm. It allows
efficient retraining of a SVMafter adding a small number of additional examples.
Boubacar et al.5 employed an online clustering algorithm that is developed to
learn continuously evolving clusters fromnonstationarydata.This algorithmuses
a fast incremental learning procedure to account for model changes over time.
Dedicated to online clustering in multiclass environment, the algorithm is based
on an unsupervised learning process with self-adaptive abilities.

6.3 Geometric Incremental Support Vector Machines

Geometric and quadratic optimization views of SVMs were shown to be
equivalent.4,11 A geometric SVM represents each class as a convex hull and
finds the minimum distance between the two.22 To address nonseparable
classes, the reduced convex hull (RCH)11 was developed.30,31 The method of
incremental learning presented here extends the RCH concept and proposes
that convex skin represent key examples in training, as well as a means of
finding convex skins.

6.3.1 Geometric support vector machines

Let x be a data point in a convex hull C. According to Caratheodory’s
theorem, x can be represented as a convex combination of a finite number of
points in C:

x ¼
Xk

j 1
ljxj, where lj � 0, and

Xk

j 1
lj ¼ 1: ð6:1Þ

Given a set of data points X, the convex hull is a linear combination of all the
elements in X and can be represented as follows:

CðX Þ ¼
�Xk

i 1
ajxi; xi 2 X , 0 � aj � 1,

Xk

i 1
ai ¼ 1

�
: ð6:2Þ

Reduced convex hull4 (also known as soft convex hull11) is the set of all
convex combinations of elements of X, denoted by RðX ,mjm < 1Þ, as follows:

RðX ,mÞ ¼
�Xk

i 1
ajxi; xi 2 X , 0 � ai � m,

Xk

i 1
ai ¼ 1

�
: ð6:3Þ

The difference between a convex hull and a RCH is that the weight factor
ai is bounded by m in a RCH. Using a suitable m for each class, two
overlapping classes can be transformed into a linearly separable case.4,11,31
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However, the RCH provides no means of finding the extreme points. To
overcome this, a compressed convex hull was proposed.35 It, however, makes
explicit assumptions on the kernel, which limits its application.

Geometric SVM represents classes as convex hulls and solves the
problem by finding the minimum distance.22 Given a set of examples
X ¼ fx1,x2, :::, xng, the function f maps each instance into a features space
fðxiÞ. For simplicity, fi is used here to denote fðxiÞ, and the mapped
examples form a feature set F ¼ ff1,f2, :::,fng. The convex hull CðFÞ is
rewritten as follows:

CðFÞ ¼
�Xk

j 1
aifijfi 2 F, 0 � ai � 1,

Xk

j 1
ai ¼ 1

�
: ð6:4Þ

Similarly, a RCH is the set of convex combinations of instances in F with ai

bounded by m as follows:

RðF,mÞ ¼
�Xk

i 1
aifijfj 2 F, 0 � ai � m,

Xk

i 1
ai ¼ 1

�
: ð6:5Þ

The decision boundary is then perpendicular to the nearest points between
RCHs and can be found following Bennett’s method.4

6.3.2 Geometric incremental support vector machine (GISVM)

Our method extends the concept of RCH and defines the skin of a convex
hull. The idea is that only the examples within the skin are most
informative and should be retained for future training, which is similar to
Katagiri’s idea,21 but a model for the data distribution is not specified.
When additional examples become available, they are used to update the
SVM together with the skin of the current convex hull. In such a way,
many fewer instances are used in a training process. In addition, with a
superset of the possible SVs retained, missing SVs due to significant
changes to the data distribution caused by the addition of new examples is
avoided.

The skin of a convex hull consists of the outer-most vertices (i.e.,
examples). Given bounding factors mu and ml, 0 � ml < mu � 1, the skin
SðF,ml,muÞ of a convex hull CðFÞ consists of instances between two RCHs
and can be expressed as follows:

SðF,ml,muÞ ¼ ffijfi 2 fRðF,muÞ RðF,mlÞgg: ð6:6Þ
When the data set is dense enough and evenly distributed in the space,

the geometric center can be used to find the extreme points of the convex
hull. However, this is usually not the case in real-world applications. Due
to the lack of knowledge of data distribution, the above procedure could
miss less-prominent extreme points. Thus, a recursive method is proposed
that finds the vertices (i.e., extreme points) of a convex hull to represent
the skin.
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It is said that fj 2 F is an extreme point of convex hullCðFÞ if there exists a
direction d in terms of two instances, i.e., d ¼ fb fa, and fa, fb 2 CðFÞ,
such that

fj ¼ max fk2Fðfk fa, dÞ, ð6:7Þ
where ðfk fa, dÞ is the inner product of the difference vectors with respect
to fa and the direction d.

The extreme points are found in two steps: first, a set of initial extreme
points are identified based on the center of gravity; and second, additional
extreme points are then found via recursively searching along the direction
defined by a pair of extreme points.

For a set of feature vectors F, the gravity center F is approximated with
the arithmetic average, i.e., F ¼Pn

i 1
1
nfi. The initial set of extreme points is

identified by projecting each point fj 2 F to the direction dðfmÞ ¼ fm F

and selecting the ones that give the maximum projection magnitude:

EseedðX Þ ¼ ffn jarg maxfnPðfn, dðfmÞÞ,; fm,fn 2 Fg, ð6:8Þ
where Pðfn, dðfmÞÞ denotes the projection of fn to dðfmÞ.

The explicit expression of the feature vectors fi is not needed to compute
the extreme points in the above procedure. The projection Pðfn,dðfmÞÞ in the
feature space can be achieved by the kernel operation in the input space as
follows. Given two feature vectors fa and fb in F, the projection of vector fc
is Pðfc, dðfa,fbÞÞ. Thus,
Pðfc, dðfa,fbÞÞ ¼ hfb fa,fc fai

¼ hfb,fci hfb,fa i hfa,fci þ hfa,fai
¼
X
i

bifi �
X
j

cjfj

X
i

bifi �
X
j

ajfjX
i

aifi �
X
j

cjfj

X
i

aifi �
X
i

aifi

¼
X
i

X
j

bicjKðxb,xcÞ
X
i

X
j

biaj Kðxb,xaÞ
X
i

X
j

aicj Kðxa,xcÞ
X
i

X
i

aiai Kðxa,xaÞ, ð6:9Þ

where
X
i
aifi,

X
i
bifi, and

X
i
cifi are convex representations of feature vectors

fa, fb, and fc, respectively. For a vector fj 2 F, its coefficient vector equals
½0, 0, :::, 1, :::, 0, 0�0 , within which the index value of the number 1 is j. For a
vectorfk 2 C F butfk 2 CðFÞ, the values in its coefficient vector are in the range
of [0, 1), e.g., the coefficient vector of the gravity centerF is 1

n ,
1
n , :::, 1

n

� �0
.

An example is illustrated in Fig. 6.1(a). The solid squares denote the
examples, and the gravity center is marked with a large circle. The projected
vectors are marked with solid dots. Using the proposed method, three extreme

155Geometric Incremental Support Vector Machine for Object Detection...

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 06/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



points are identified and highlighted with solid squares. For example, point 16
is identified as an extreme point because it gives the greatest projection to
dðx16,X Þ [as well as dðx15,X Þ]. However, instances 14, 15, 17, and 18 are
extreme points that are missed by the process.

The primary cause of missing extreme points is the insufficient number of
examples, which could be exaggerated in high-dimensional cases. If data points
in the feature space are known, classical algorithms such as QuickHull2 and
Gift Wrapping17 can be used to complete the search. The idea of the proposed
algorithm is to recursively search along the perpendicular directions of the
convex hull boundaries, which is presented in Algorithms 1 and 2.

Algorithm 1: Search for extreme points.
Require: F and E

1. Randomly select fp, fq 2 E
2. Randomly select fm 2 F and m 6¼ p,m 6¼ q
3. Identify probing direction d� using Eq. (6.10)
4. F  ffijPðfi,d

�Þ < 0g
5. Fþ  ffijPðfi,d

�Þ > 0g
6. E  E [ ProbingðFþ, d�,fp,fqÞ
7. E  E [ ProbingðF , d�,fp,fqÞ
8. Return E

This algorithm randomly selects two extreme points fp,fq 2 E and another
instance fm 2 F. The searching direction d� can then be determined as follows:

d� ¼ fm fp P fm, dðfp,fqÞ
fq fp

jjfq fpjj
: ð6:10Þ

! 

A hyperplane through fq fp and perpendicular to d splits the space into
two halves. The projections of instances, i.e., Pðfi, d

�Þ, that are on the same
sides as fm are positive, denoted by Fþ; whereas the projections of the rest

Figure 6.1 Finding extreme (a) data and (b) seed points recursively.
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instances are negative, denoted by F . Hence, the further searching for
extreme points is divided into two parts, as shown in Algorithm 1.

Searching in each half space is achieved recursively using a pair of
identified extreme points fp and fq. Let F

0 denote the instances in the half
space. With a random instance fm in F0, a probing direction d� can be
determined by Eq. (6.10) that points toward the outside of the convex hull;
otherwise, change its direction. Hence, an extreme point is identified in F0

following Eq. (6.7). fm is paired with fp and fq to split the feature space for
further probing. The process stops when no additional points exist in F0.

Algorithm 2: Recursively probe and search for the extreme points Probing
(F0, d , fp, fq).
Require: F

0
⊆F, d, fp, and fq

1. F  ∅
2. Randomly select fm 2 F

0
and m 6¼ p, m 6¼ q

3. If F
0 6¼ ∅, then

4. Identify probing direction d� using Eq. (6.10)
5. If hd�,di < 0, then
6. d�  d�

7. End if
8. d�  d�

jjd�jj
9. F  F [ ffejfe ¼ arg max

fK2F0PðFk, d�Þg
10. For all fi 2 F0, do
11. If Pðfi, d�Þ > 0, then
12. F00  F00 [xi
13. End if
14. End for
15. F  F [ ProbingðF00, d,fp,feÞ
16. F  F [ ProbingðF00, d,fq,feÞ
17. End if
18. Return F

Figure 6.1(b) illustrates an example of probing in a half space. The dotted
lines depict the projections of the instances. The two extreme points are 17 and
18, which determine the probing direction (d and –d in Algorithm 1). Extreme
points 1 and 12 are found.

In the algorithm, themagnitude of vectorsfð2Þ fð1Þ is calculated as follows:

kfð2Þ fð1Þk ¼ hfð1Þ,fð1Þi þ hfð2Þ,fð2Þi 2hfð2Þ,fð1Þi 1
2

��

¼
�X

i

X
j

b
ð1Þ
i b

ð1Þ
j Kðxi,xjÞ þ

X
i

X
j

b
ð2Þ
i b

ð2Þ
j Kðxi,xjÞ

2
X
i

X
j

b
ð2Þ
i b

ð2Þ
j Kðxi,xjÞ

� 1
2 ð6:11Þ
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The range of the projections RX,d of a set of examples X in given

directions d ¼ xð1Þ xð2Þ, xð jÞ ¼
X
i

xib
ðjÞ
i for j ¼ 1, 2 would be

RX ,d ¼ ½min xi2XPxi, d ,max xi2XPxi, d �: ð6:12Þ
Given a set X ¼ fx1, � � � ,xng, the skin segment with an angle u around

d ¼ xð1Þ xð2Þ is

SSX ,d ¼ xi jxi 2 EðXÞ, cos 1 d,xð2Þ xj
� 	
kdk � xð2Þi xj




 


 � u

8<
:

9=
;: ð6:13Þ

The angle uj between vectors xj 2 Xi and center of gravity xðgÞi and w ¼
x�þ x� can be found using

w,xðgÞ xj
i

D E
¼ kwk � jjxðgÞi xjjjcosu, and u ¼ cos 1 hw,xðgÞi xji

jjwjj � jjxðgÞi xjjj :
ð6:14Þ

The decision boundary is perpendicular to w�2 w�1, where w�1 and w�2 are
the nearest points between the RCHs. Gilbert’s algorithms15 are used to identify
the nearest points between convex hulls (as shown in Algorithm 3). Figure 6.2
illustrates an example of GISVM for a linearly nonseparable case. The two
classes are enclosed with convex hulls and overlap, as shown in Fig. 6.2(a). The
skin of the convex hull is shown in Fig. 6.2(b). Two RCHs are highlighted with
solid triangles: the outer RCHs transform the problem into a linearly separable
case [see Fig. 6.2(c) for an example], whereas the inner RCHs define the skin
thickness. The skin for retention is depicted in Fig. 6.2(d).

Algorithm 3: Gilbert’s algorithm for finding the nearest points of two convex
hulls.15

1. Z  ffþ f jfþ 2 Fþ,f 2 F g
2. Randomly select z� 2 CðZÞ
3. Repeat
4. z�old  z�

5. z arg min zi2ZPðzi, z�Þ
6. z arg min zi2ZPðzi, z�Þ
7. Until jjz� z�oldjj 	 0

6.4 Experimental Results and Discussion

6.4.1 Synthetic and benchmark data preparation

The experiments presented here used synthetic data sets, real-world data sets,
and CE videos for evaluation. Two synthetic data sets were created by
randomly sampling 2D Gaussian functions and the checkerboard function,
namely the XOR data set (see Fig. 6.3 for examples). Ten sets of examples
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were randomly generated using each model. The Gaussian data set has 1%
overlap, whereas the XOR data set has no overlap. Four real-world data sets
were obtained from the UCI machine learning repository.1 In addition, a
mammogram8 data set was used. Each feature in a data set was normalized to
unify its range to between 0 and 1. Table 6.2 lists the properties of the
benchmark data sets used in the experiments.

6.4.2 Parameter selection

Figure 6.3 illustrates the decision boundaries of the proposed method applied
to synthetic data sets using RBF, polynomial, and linear kernels. The shade in

Figure 6.2 Geometric incremental SVM using convex hull skin for linearly nonseparable
problems. (a) Two linearly nonseparable classes consisting of 700 examples. (b) The
classes become linearly separable using RCHðm ¼ 0:1Þ. (c) The decision boundary is found
by finding the nearest points between two RCHs. (d) Examples within Sðxi ,0:1,1Þ are
retained for future model updates.
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Table 6.2 Benchmark data sets and their characteristics.

Data Sets Number of
Dimensions

Positive Class Data Set Size

þ Class Class

SPECT 22 1 212 55
PIMA 8 1 268 500
YEAST 8 CYT 463 1021
IONOSPHERE 34 b 126 225
MAMMOGRAM 6 2 260 10923

Figure 6.3 Decision boundaries from applying the proposed method to the synthetic data
sets using different kernels.
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the plots depicts the distance to the decision boundary. The incremental
training starts with ten examples, and with each update, five new examples are
randomly selected and used. The updates continue until all examples are
exhausted. As shown in the figure, when the s of the RBF kernel is decreased,
the final classifier appears overfitted. Among all of the kernels tested, RBF
kernels with s ¼ 0:1 resulted in better decision boundaries. It is evident that
when examples are presented to the GISVM in an incremental fashion, the
proposed method achieves superior closeness in modeling the underlying data
distribution. The optimal level is reached with RBF kernels of s ¼ 0:1.

6.4.3 Efficiency analysis

Figures 6.4(a) and (c) illustrate the maximum number of examples retained
(i.e., the examples in the skin of the RCHs) for various s used in RBF kernels.
As s decreases, the number of examples retained significantly increases. When
s reaches 0.01, the number of examples retained is approximately the total
number of examples in the training set. This indicates overfitting of the model,
which is consistent with previous experimental results. On the other hand, the
number of support vectors (in solid curve) varies slightly. According to these
plots, a good choice for s is 0.1, which provides a close description of the data
sets and retains only a small number of examples in the training iterations.

Figures 6.4(b) and (d) show the number of examples retained in the
training iterations. With a properly chosen s, the number of retained
examples is small, which implies the stability of the incremental learning

Figure 6.4 The number of extreme points identified using RBF kernels. (a) and (c) show
the number of retained examples and SVs as a function of s using Gaussian and XOR data
sets, respectively. (b) and (d) show the number of retained examples using RBF kernel when
s ¼ 1:0,0:1,and 0:01 (from left to right).
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process. This also indicates that a much-smaller amount of memory was used
to complete the learning.

Table 6.3 lists the time (in seconds) required by the GISVM and batch-
learning libSVM to complete the training. Ten repetitions were conducted,
and the average time and the standard deviation are reported. Because
random examples were used, the training time varies. These experiments
assumed that an equal number of examples was used to update a classifier in
the incremental learning. The size of examples is referred to as step size D.

Limited by the number of examples in the benchmark data sets, two step
sizes (i.e., D ¼ 10 and D ¼ 20) were used in the evaluations. It is clear that the
time used by incremental learning is much less than that used by the libSVM.
Among all cases, the MAMMOGRAM case consists of the largest number of
examples and took significantly more time for training. Although the
minimum time to complete training using MAMMOGRAM is in the time
range of the GISVM, it can require up to triple the time that the libSVM
needs. It is evident that the proposed incremental learning handles data
efficiently and can update the classifier in much less time. The average time
cost for this method to complete is approximately 13.4% of the time cost for
batch-learning SVMs.

It is an interesting observation that a larger step size does not necessarily
result in a longer training time. For data sets SPECT, PIMA, and
MAMMOGRAM, training of the GISVM took less time using a step size
of 20 than a step size of 10. Even in the other cases, the difference is small.
This is probably due to the fact that only a small number of examples (i.e.,
examples within the skin of the RCHs) were carried over to the next round of
updates.

Table 6.3 The average training time (in seconds) and standard deviation using batch-
learning libSVM and the proposed GISVM. The number of iterations is also reported for the
GISVM.

Data Sets Batch-Learning
libSVM

GISVM

D 10 D 20

Time Time Iteration Time Iteration

GAUSSIAN 2.9 (0.4) 0.2 (0.04) 19 0.21 (0.06) 9
XOR 5.2 (0.4) 0.34 (0.03) 19 0.54 (0.08) 9
SPECT 2.7 (0.3) 0.35 (0.05) 11 0.25 (0.02) 6
YEAST 97.2 (12.5) 3.59 (0.25) 73 5.16 (0.42) 37
PIMA 71.4 (7.9) 21.14 (0.25) 36 13.39 (1.34) 19
IONOSPHERE 3.8 (0.5) 0.3 (0.04) 15 0.43 (0.05) 8
MAMMOGRAM 4787 (2261) 2859 (541) 445 1540 (338) 223
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6.4.4 Accuracy analysis

Figure 6.5 illustrates the classifiers’ performance based on accuracy,
sensitivity, and specificity during the incremental iterations. Ten repetitions
were conducted with randomized initial examples. In each data set, 50% of the
data were used for training; the remaining examples were used for testing.

In each case, a SVM classifier was created using all the training data. The
best parameters were selected based on their generalization performance with

Figure 6.5 Accuracy performance of the GISVM using UCI data sets.
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the testing data set. Table 6.4 lists the selected kernels and parameters that
gave the best performance measures. The results from these classifiers are used
as a reference and are depicted as the horizontal lines in Fig. 6.5.

In the proposed incremental learning process, ten examples were
randomly selected from each class of the training set, and a SVM was
trained. In each incremental step, ten randomly selected examples from the
remaining training data set were used to update the classifier. The
intermediate classifiers were evaluated with the test data set. For each data
set, ten repetitions were conducted, and the average performance is plotted
with a solid line in Fig. 6.5. The shaded area depicts the accuracy variation.

With more examples included in the training process, the classifier trained
with the proposed method improves its performance; this is evident in the
cases of YEAST, SPECT, PIMA, and IONOSPHERE. In the case of
MAMMOGRAM (i.e., ISM), the performance is already close to optimal at
the beginning, and there is no room for improvement. However, improvement
in sensitivity can still be observed in the training, and by the end of iterations,
the classifier outperformed the batch learning by a small margin.

Despite a slight drop of specificity of the SPECT data set, the SVMs
trained with the proposed method achieved the same performance or even
outperformed the batch-learning method. As listed in Table 6.2, the SPECT
data set contains more positive examples than negative ones, the ratio of
which is approximately 4:1. Hence, the improvement of sensitivity leverages
the underperformance of specificity, and the overall accuracy is close to the
batch-learning results. It is interesting that in five cases, the intermediate
classifier had degradation in early iterations, but the training process was able
to recover to the benchmark performance asymptotically as additional
examples are included.

6.4.5 Experiments with CE videos

The analysis tool provided by the manufacturer of the Pillcam® capsule
endoscope plots the path of the device through the digestive tract based on the
wireless signal strength transmitted to the external image downloader carried

Table 6.4 Parameters used in the proposed GISVM.

Data Sets Kernel Parameter Convex Skin

mu ml

SPECT s 0:05 0.9 0.6
YEAST s 0:10 0.9 0.6
PIMA s 0:15 0.5 0.3
IONOSPHERE s 0:01 0.5 0.3
MAMMOGRAM s 0:01 0.8 0.4
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by the patient. Our experiments on CE videos were performed to automate the
classification of the frames in CE videos into digestive organs, namely the
esophagus, stomach, small intestine, and colon.

Six CE videos were collected and manually annotated by gastroenterol-
ogists. Each video consists of approximately 55,000 frames. Out of the six
videos, one was randomly selected to train the classifier, and the other five
were used for testing.

In previous experiments with CE videos, the HSV color space was found
to have a better classification performance on average.16 In addition, using the
histogram significantly reduces the dimensionality.* Hence, the color
histogram in the HSV space was adopted as a feature. The color histogram
is a very large and sparse matrix: With n bins used in each color component,
there are n3 features using the HSV histogram for every video frame, most of
which are zeros or close to zeros. To suppress sparseness and the number of
values in features, only the hue and saturation (HS) components were used.
As observed in previous experiments,16,29 using HS components improves
control of lighting variations in the GI tract.

The order of classification of multiclass SVMs was determined based on
the preliminary evaluation. In the experiments, identification of the esophagus
gives the best accuracy followed by the identification of the small intestine.
Hence, the order is determined and listed in Table 6.5. The kernels used to
train a SVM are also included in this table.

In the learning process, 50 frames were randomly selected from each class
of the training video to train a SVM. In each incremental step, 20 frames
randomly selected from the remaining training video frames were used to
update the classifier. The iteration repeats until the training examples exhaust.
Table 6.6 lists the accuracy of the final classifiers. The performance of this
method is highly satisfactory. With the majority of frames acquired in the
stomach and small intestine, the average accuracies are 86.9% and 94.4%,
respectively. Images acquired in the colon are disturbed by the presence of feces.

At the end of incremental training, only 12% of the frames were part of
the skins among the four classes for the hierarchical SVMs. Apparently, the

Table 6.5 Order and parameters of hierarchical classification of organs of CE videos.

Order Dividing Classes Kernel Parameters

1 Esophagus vs. the rest RBF (s 0:15)
2 Small intestine vs. stomach and colon RBF (s 0:1)
3 Stomach vs. colon RBF (s 0:5)

* Each frame is a 256� 256 color image. If color is used, the dimensionality of each
example is up to 196,608.
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smaller number of examples demands much less memory space for the
learning process and thus provides a plausible mechanism for handling a large
amount of data. When new examples are added, the classifier is updated
efficiently in contrast to the conventional batch-learning methods.

6.5 Conclusion

This chapter presents a GISVM method to learn from large data sets with an
emerging trend and dynamic patterns. To overcome high computational
demands from a large data set, this method identifies a subset of examples for
the training process. It extends the reduced convex hull concept and defines
the skin segments of convex hulls. The skin is found by identifying the extreme
points of the convex hull. This method is founded on the idea that the
examples within the convex hull skin are a superset to the support vectors,
including the potential ones in future training. When additional examples are
provided, they are used together with the skin of the convex hull constructed
from the previous data set.

Using the skin of convex hull in the incremental learning process results in
a small number of instances at every incremental step. The set of extreme
points are found by recursively searching along the direction defined by a pair
of extreme points. Besides the advantages in computational efficiency, the
proposed method handles linearly nonseparable cases in multiclass problems.

Experiments were conducted with synthetic, benchmark, and CE data
sets. With the synthetic data sets, the proposed method achieves highly
satisfactory classifiers that closely model the underlying data distribution with
appropriate kernels. The choice of RBF kernel for the synthetic data sets
provides a good description of the data sets and retains only a small number
of examples in the training iterations.

Using the experiments on benchmark data sets, this chapter demonstrates
that the GISVM learning handles data efficiently and updates the classifier in
approximately 13.4% of the time needed by the batch-learning SVM.
Performance over the incremental steps further verifies the superior stability,
improvement, and recoverability of the proposed method. The accuracy over
the incremental steps increases steadily. Even in the cases when the
performance drops, the classifier is able to recover to previous levels in
future iterations because the convex hull skin that contains useful examples is

Table 6.6 GISVM performance of digestive organs in CE videos.

Video Esophagus Stomach Small Intestine Colon

1 100% 87.6% 94.2% 85.3%
2 94.4% 85.8% 95.3% 82.2%
3 95.0% 87.2% 94.7% 84.3%
4 100% 86.4% 94.1% 83.7%
5 90.0% 87.7% 93.9% 94.3%
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retained. Furthermore, the improvement in the performance measures over
the incremental steps (by deleting examples other than the ones on the skin)
indicates that retaining the examples on the skin preserves adequate
information about the decision boundary of SVMs.

From the experiments on CE videos it was noted that the average
performance of classifying a CE video is above 86.9%, which is very
competitive. The amount of memory space required in the training process
could be one-eighth of what is required by the conventional SVM, which casts
new light on processing large data sets with limited resources. Further
experiments on CE videos demonstrated that the GISVM can handle data
that could not be handled by the libSVM.
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