"My laboratory focuses on two areas of chemical biology. In one
area, we seek to understand the remarkable catalytic prowess of enzymes,
in particular those that use free radicals in catalysis. Recently, we
have also begun to explore the potential for developing novel biological
catalysts and therapeutic agents offered by the de-novo design and synthesis
of novel proteins incorporating highly fluorinated amino acids. Our research
is inherently inter-disciplinary in nature and draws on a synergistic
combination of bio-organic, bio-inorganic and bio-physical chemistry.
Our major interest is in enzymes that use free radicals (a carbon
with an unpaired electron) to catalyze a variety of unusual reactions,
many of which have no ready counterpart in organic chemistry. Normally,
organic radicals are thought of as highly reactive species that are dangerous
to biological systems. However, enzymes can profoundly alter the reactivity
of free radicals so that a radical with a lifetime of microseconds in
free solution may be stable for days when generated within a protein!
Enzymes are therefore able to exploit free radicals as 'sparks'with which
to ignite reactions on otherwise un-reactive substrate molecules.
|
|
|
We are studying a class of enzymes that use the cobalt-containing
organo-metallic coenzyme B12 to generate free radicals. These enzymes
provide excellent model systems with which to study free radical catalysis.
We are using a variety of kinetic and spectroscopic techniques, together
with site-specific mutagenesis to understand how the enzymes generate
and control reactive organic radical species.
In a new area of research, we are exploring the interface between
biological macromolecules and materials chemistry though the de-novo design
of extensively fluorinated "Teflon" proteins. Perfluorocarbons
exhibit unique and useful physical properties that are not found in nature.
For example, Teflon derives its highly inert and non-stick properties
from the perfluorinated polymer polytetrafluoroethylene. We are examining
the effects of replacing 'greasy'hydrophobic amino acids that are found
in the interior of proteins with extensively fluorinated analogs to create
a 'Teflon'interior. We expect that such proteins may exhibit useful new
properties such as increased thermal stability, resistance to unfolding
in organic solvents, and resistance to degradation by proteases. Teflon
proteins may also exhibit novel protein:protein interactions and provide
model systems to test theories of protein folding. "
Dr Neil Marsh
|
|