Energy Storage and Materials Simulation Lab

University of Michigan - Ann Arbor

  1. 1.K. Kim and D. J. Siegel, Machine Learning Reveals Factors that Control Ion Mobility in Anti-perovskite Solid Electrolytes, Journal of Materials Chemistry A, Accepted Manuscript (2022). DOI: 10.1039/d2ta03613d

  2. 2.K. Nath, A. Ahmed, D. J. Siegel and A. J. Matzger, Computational Identification and Experimental Demonstration of High-Performance Methane Sorbents, Angewandte Chemie International Edition, e202203575, (2022). DOI:10.1002/anie.202203575

  3. 3.J. G. Smith and D. J. Siegel, Ion Migration Mechanisms in the Sodium Sulfide Solid Electrolyte Na3−xSb1−xWxS4, Chemistry of Materials, 34, 4166-4171 (2022). DOI:10.1021/acs.chemmater.2c00526

  4. 4.K. Kim, Y. Li, P.-C. Tsai, F. Wang, S.-B. Son, Y.-M. Chiang, D. J. Siegel, Exploring the Synthesis of Alkali-metal Anti-perovskites, Chemistry of Materials, 34, 947–958, (2022). DOI:10.1021/acs.chemmater.1c02150

  5. 5.S. Yu and D. J. Siegel, Atomic-Scale Simulations of the Solid Electrolyte Li7La3Zr2O12, Chapter 15 in Transition Metal Oxides for Electrochemical Energy Storage, 1st Ed. J. Nanda and V. Augustyn, Editors, 375-391, (2022) WILEY-VCH GmbH. DOI: 10.1002/9783527817252.ch15

  6. 6.J. Cabana, T. Alaan, G. W. Crabtree, M. C. Hatzell, K. Manthiram, D. A. Steingart, I. Zenyuk, F. Jiao, A. Vojvodic, J. Y. Yang, N. P. Balsara, K. A. Persson, D. J. Siegel, C. L. Haynes, J. Mauzeroll, M. Shen, B. J. Venton, N. Balke, J. Rodríguez-López, D. R. Rolison, R. Shahbazian-Yassar, V. Srinivasan, S. Chaudhuri, A. Couet, and J. Hattrick-Simpers, NGenE 2021: Electrochemistry Is Everywhere, ACS Energy Letters, 7, 368–374 (2022). DOI:10.1021/acsenergylett.1c02608

  7. 7.S. Kuthuru, D. Aulakh, J. Purewal, D. J. Siegel, M. Veenstra, and A. J. Matzger, Optimizing Hydrogen Storage in MOFs through Engineering of Crystal Morphology and Control of Crystal Size, Journal of the American Chemical Society, 143, 10727-10734 (2021). DOI:10.1021/jacs.1c04926

  8. 8.D. J. Siegel, L. Nazar, Y.-M. Chiang, C. Fang, and N. P. Balsara, Establishing a Unified Framework for Ion Solvation and Transport in Liquid and Solid Electrolytes, Trends in Chemistry, 3, 807-818 (2021). DOI: 10.1016/j.trechm.2021.06.004

  9. 9.A. Ahmed and D. J. Siegel, Predicting Hydrogen Storage in MOFs via Machine Learning, Patterns, 2, 100291 (2021). DOI: 10.1016/j.patter.2021.100291

  10. 10.K. Kim and D. J. Siegel, Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes, Chemistry of Materials, 33, 2187–2197 (2021).                               DOI:10.1021/acs.chemmater.1c00096

  11. 11.H. Park, S. Yu, and D. J. Siegel, Predicting Charge Transfer Stability Between Sulfide Solid Electrolytes and Li Metal Anodes, ACS Energy Letters, 6, 150-157 (2020). DOI:10.1021/acsenergylett.0c02372 

  12. 12.M. R. Fuhst and D. J. Siegel, Gas Evolution in Li-ion Batteries: Modeling Ethylene Carbonate Decomposition on LiCoO2 in the Presence of Surface Magnetism, Journal of Physical Chemistry C, 124, 24097-24104 (2020). DOI:10.1021/acs.jpcc.0c07550

  13. 13.J. Lowe and D. J. Siegel, Modeling the Interface Between Lithium Metal and its Native Oxide, ACS Applied Materials & Interfaces, 12, 46015-46026 (2020) DOI: 10.1021/acsami.0c12468

  14. 14.F. Wang, H. A. Evans, K. Kim, L. Yin, Y. Li, P.-C. Tsai, J. Liu, S. H. Lapidus, C. M. Brown, D. J. Siegel, and Y.-M. Chiang, Dynamics of Hydroxyl Anions Promotes Lithium Ion Conduction in Antiperovskite Li2OHCl, Chemistry of Materials, 32, 8481-8491 (2020), DOI: 10.1021/acs.chemmater.0c02602

  15. 15.L. Yin, M. Murphy, K. Kim, L. Hu, J. Cabana, D. J. Siegel, and S. H. Lapidus, Synthesis of Antiperovskite Solid Electrolytes: Comparing Li3SI, Na3SI, and Ag3SI, Inorganic Chemistry, 59, 11244–11247 (2020), DOI: 10.1021/acs.inorgchem.0c01705

  16. 16.K.S. Nagy and D. J. Siegel, Anisotropic Elastic Properties of Battery Anodes, Journal of the Electrochemical Society, 167, 110550 (2020), DOI: 10.1149/1945-7111/aba54c

  17. 17.L. Trahey, F. R. Brushett, N. P. Balsara, G. Ceder, L. Cheng, Y.-M. Chiang, N. T. Hahn, B.J. Ingram, S.D. Minteer, J.S. Moore, K.T. Mueller, L.F. Nazar, K.A. Persson, D. J. Siegel, K. Xu, K. R. Zavadil, V. Srinivasan, G. W. Crabtree, Energy storage emerging: A Perspective from the Joint Center for Energy Storage Research, Proceedings of the National Academy of Sciences, 117, 12550-12557 (2020), DOI: 10.1073/pnas.1821672117

  18. 18.J. G. Smith and D. J. Siegel, Low-Temperature Paddlewheel Effect in Glassy Solid Electrolytes, Nature Communications, 11, 1483 (2020), DOI: 10.1038/s41467-020-15245-5

  19. 19.R. Garcia-Mendez, J. G. Smith, J. C. Neuefeind, D. J. Siegel and J. Sakamoto, Correlating Macro and Atomic Structure with Elastic Properties and Ionic Transport of Glassy Li2S-P2S5 (LPS) Solid Electrolyte for Solid-State Li Metal Batteries, Advanced Energy Materials 2000335, (2020). DOI: 10.1002/aenm.202000335

  20. 20.N. R. Mathiesen, S. Yang, J. M. García-Lastra, T. Vegge, and D. J. Siegel, Charge Transport in Alkali-Metal Superoxides: A Systematic First-Principles Study, Chemistry of Materials, 31, 9156-9167 (2019), DOI: 10.1021/acs.chemmater.9b03592

  21. 21.K. Kim and D. J. Siegel, Predicting Wettability and the Electrochemical Window of Lithium Metal/Solid Electrolyte Interfaces, ACS Applied Materials & Interfaces, 11, 39940-39950 (2019), DOI: 10.1021/acsami.9b13311

  22. 22.S. Yu, H. Park, and D. J. Siegel, Thermodynamic Assessment of Coating Materials for Solid-State Li, Na, and K Batteries, ACS Applied Materials & Interfaces, 11, 36607-36615 (2019), DOI: 10.1021/acsami.9b11001

  23. 23.J. Purewal, M. Veenstra, D. Tamburello, A. Ahmed, A. J. Matzger, A. G. Wong-Foy, S. Seth, Y. Liu, D. J. Siegel, Estimation of System-Level Hydrogen Storage for Metal-Organic Frameworks with High Volumetric Storage Density, International Journal of Hydrogen Energy, 44, 15135-15145 (2019).  DOI: 10.1016/j.ijhydene.2019.04.082

  24. 24.A. Ahmed, S. Seth, J. Purewal, A. G. Wong-Foy, M. Veenstra, A. J. Matzger, and D. J. Siegel, Exceptional Hydrogen Storage Achieved by screening Nearly Half a Million Metal-Organic Frameworks, Nature Communications, 10, 1568 (2019). DOI: 10.1038/s41467-019-09365-w

  25. 25.X. Liu, Y. Chen, Z. D. Hood, C. Ma, S. Yu, A. Sharafi, H. Wang, K. An, J. Sakamoto, D. J. Siegel, Y. Cheng, N. H. Jalarvo and M. Chi, Elucidating the Mobility of H+ and Li+ ions in (Li6.25-xHxAl0.25)La3Zr2O12 via Correlative Neutron and Electron Spectroscopy, Energy & Environmental Science, 12, 945-951 (2019).  DOI: 10.1039/c8ee02981d

  26. 26.K. Nagy, S, Kazemiabnavi, K. Thornton, and D. J. Siegel, Thermodynamic Overpotentials and Nucleation Rates for Electrodeposition on Metal Anodes, ACS Applied Materials & Interfaces, 11, 7954-7964 (2019). DOI: 10.1021/acsami.8b19787

  27. 27.K. Kim and D. J. Siegel, Correlating Lattice Distortions, Ion Migration Barriers, and Stability in Solid Electrolytes, J. Mater. Chem. A, 7, 3216-3227 (2019): DOI: 10.1039/C8TA10989C

  28. 28.Seungho Yu and D. J. Siegel, Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration Through Stiff Solid Electrolytes, ACS Applied Materials & Interfaces, 10, 38151-38158 (2018). DOI:10.1021/acsami.8b17223

  29. 29.E. Kazyak, K-H Chen, A. L. Davis, S. Yu, A. J. Sanchez, J. Lasso, A. R. Bielinski, T. Thompson, J. Sakamoto, D. J. Siegel, and Neil P. Dasgupta, Atomic Layer Deposition and First Principles Modeling of Glassy Li3BO3–Li2CO3 Electrolytes for Solid-State Li-Metal Batteries, Journal of Materials Chemistry A, 6, 19425-19427 (2018). DOI: 10.1039/c8ta08761j

  30. 30.J. G. Smith, G. Vardar, C. W. Monroe, and D. J. Siegel, Experimental and Computational Investigation of Nonaqueous Mg/O2 Batteries. Chapter 11 in Metal–Air Batteries: Fundamentals and Applications, Xin-bo Zhang, Editor. Wiley-VCH Verlag GmbH & Co. KGaA. (2018) DOI: 10.1002/9783527807666.ch11

  31. 31.M. D. Allendorf, Z. Hulvey, T. Gennett, A. Ahmed, T. Autrey, J. Camp, H. Furukawa, M. Haranczyk, M. Head-Gordon, A. Karkamkar, D.-J. Liu, J. R. Long, K. R. Meihaus, I. H. Nayyar, R. Nazarov, D. J. Siegel, V. Stavila, J. J. Urban, S. P. Veccham and B. C. Wood, An Assessment of Strategies for the Development of Solid-State Adsorbents for Vehicular Hydrogen Storage, Energy & Environmental Science, 11, 2784-2812 (2018). DOI: 10.1039/c8ee01085d

  32. 32.J. Lowe and D. J. Siegel, Reaction Pathways for Solvent Decomposition on Magnesium Anodes, Journal of Physical Chemistry C, 122, 10714–10724 (2018). DOI: 10.1021/acs.jpcc.8b01752

  33. 33.S. Kiyabu, J. S. Lowe, A. Ahmed, and D. J. Siegel, Computational Screening of Hydration Reactions for Thermal Energy Storage: New Materials and Design Rules, Chemistry of Materials, 30, 2006-2017 (2018). DOI: 10.1021/acs.chemmater.7b05230 

  34. 34.Haesun Park, Nitin Kumar, Marko Melander, Tejs Vegge, Juan Maria Garcia Lastra, and D. J. Siegel, Adiabatic and Nonadiabatic Charge Transport in Li-S Batteries, Chemistry of Materials, 30, 915-928 (2017). DOI: 10.1021/acs.chemmater.7b04618

  35. 35.J. Wolfenstine, J. L. Allen, J. Sakamoto, D. J. Siegel, and H. Choe, Mechanical Behavior of Li-ion-conducting Crystalline Oxide-based solid Electrolytes: A Brief Review, Ionics, 24, 1271-1276 (2018), DOI: 10.1007/s11581-017-2314-4

  36. 36.D. Samuel, C. Steinhauser, J. G. Smith, A. Kaufman, M. D. Radin, J. Naruse, H. Hiramatsu, and D. J. Siegel, Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride, ACS Applied Materials & Interfaces, 9, 43755-43766 (2017). DOI: 10.1021/acsami.7b15547 

  37. 37.S. Yu and D. J. Siegel, Grain Boundary Contributions to Li-ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO), Chemistry of Materials, 29, 9636-9647 (2017). DOI:10.1021/acs.chemmater.7b02805

  38. 38.A. Ahmed, Yiyang Liu, Justin Purewal, Ly D. Tran, Antek G. Wong-Foy, Mike Veenstra, Adam J. Matzger, and D. J. Siegel, Balancing Gravimetric and Volumetric Hydrogen Density in MOFs, Energy & Environmental Science, 10, 2459-2471 (2017), DOI: 10.1039/C7EE02477K

  39. 39.T. Vegge, J. M. Garcia-Lastra, and D. J. Siegel, Lithium-Oxygen Batteries: At a Crossroads?, Current Opinion in Electrochemistry, 6, 100-107 (2017), DOI: 10.1016/j.coelec.2017.10.014

  40. 40.A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, and J. Sakamoto, Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12, Chemistry of Materials, 29, 7961-7968 (2017). DOI: 10.1021/acs.chemmater.7b03002

  41. 41.Yang Ming, Nitin Kumar, and D. J. Siegel, Water Adsorption and Insertion in MOF‐5, ACS Omega, 2, 4921-4928 (2017). DOI: 10.1021/acsomega.7b01129

  42. 42.A. Sharafi, S. Yu, M. Naguib, M. Lee, C. Ma, H. M. Meyer, J. Nanda, M. Chi, D. J. Siegel, and J. Sakamoto, Impact of Air Exposure and Surface Chemistry on Li-Li7La3Zr2O12 Interfacial Resistance, Journal of Materials Chemistry A, 5, 13475-13487 (2017). DOI:10.1039/c7ta03162a

  43. 43.H. Park and D. J. Siegel, Tuning the Adsorption of Polysulfides in Lithum-Sulfur Batteries with Metal-Organic Frameworks, Chem. Mater., 29, 4932 (2017). DOI:10.1021/acs.chemmater.7b01166

  44. 44.J. G. Smith, J. Naruse, H. Hiramatsu, and D. J. Siegel, Intrinsic Conductivity in Magnesium-Oxygen Battery Discharge Products: MgO and MgO2, Chem. Mater., 29, 3152 (2017). DOI: 10.1021/acs.chemmater.7b00217

  45. 45.T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. L. Allen, E. Kioupakis, D. J. Siegel, and J. Sakamoto, Electrochemical Window of the Li-ion Solid Electrolyte Li7La3Zr2O12 (LLZO), ACS Energy Lett. 2, 462 (2017). DOI: 10.1021/acsenergylett.6b00593.

  46. 46.J. Zhong, D. J. Siegel, L. G. Hector, and J. B. Adams, Atomistic Simulations of Adhesion, Indentation and Wear at the Nanoscale, in Applied Nanoindentation in Advanced Materials (A. Tiwari and S. Natarajan, Editors), John Wiley & Sons, Chichester, UK, (2017). DOI: 10.1002/9781119084501.ch25

  47. 47.G. Vardar, J. G. Smith, T. Thompson, K. Inagaki, J. Naruse, H. Hiramatsu, A. Sleightholme, J. Sakamoto, D. J. Siegel, and C. W. Monroe, A Mg/O2 Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte, Chem. Mater., 28, 7629 (2016). DOI: 10.1021/acs.chemmater.6b02488

  48. 48.A. F. Chadwick, G. Vardar, S. DeWitt, A. E. S. Sleightholme, C. W. Monroe, D. J. Siegel, and K. Thornton, Computational Model of Magnesium Deposition and Dissolution for Property Determination via Cyclic Voltammetry, J. Electrochemical Soc., 163, A1813-A1821 (2016). DOI: 10.1149/2.0031609jes

  49. 49.Y. Ming, J. Purewal, J. Yang, C. Xu, M. Veenstra, M. Gaab, U. Muller, and D. J. Siegel, Stability of MOF-5 in a Hydrogen Gas Environment Containing Fueling Station Impurities, Int. J. Hydrogen Energy, 41, 9374 (2016). DOI:10.1016/j.ijhydene.2016.03.155

  50. 50.N. Kumar and D. J. Siegel, Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries, J. Phys. Chem. Lett., 7, 874 (2016). DOI: 10.1021/acs.jpclett.6b00091

  51. 51.J. G. Smith, J. Naruse, H. Hiramatsu, and D. J. Siegel, Theoretical Limiting Potentials in Mg/O2 Batteries, Chem. Mater., 28 1390 (2016). DOI: 10.1021/acs.chemmater.5b04501

  52. 52.S. Yu, R. D. Schmidt, R. Garcia-Mendez, E. Herberts, N. J. Dudney, J. B. Wolfenstine, J. Sakamoto, and D. J. Siegel, Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater., 28, 197 (2015). DOI:10.1021/acs.chemmater.5b03854

  53. 53.G. Vardar, E. G. Nelson, J. G. Smith, J. Naruse, H. Hiramatsu, B. M. Bartlett, A.E.S. Sleightholme, D. J. Siegel, and C. W. Monroe,  Identifying the Discharge Product and Reaction Pathway for a Secondary Mg/O2 Battery, Chem. Mater., 27, 7564 (2015). DOI:10.1021/acs.chemmater.5b03608

  54. 54.M. D. Radin, C. W. Monroe, and D. J. Siegel, Impact of Space Charge Layers on Sudden Death in Li/O2 Batteries, J. Phys. Chem. Lett., 6, 3017 (2015). DOI:10.1021/acs.jpclett.5b01015

  55. 55.H. S. Koh, M. K. Rana, A. Wong-Foy and D. J. Siegel, Predicting Methane Storage in Open-Metal-Site MOFs, J. Phys. Chem. C, 119, 13451 (2015). DOI:10.1021/acs.jpcc.5b02768

  56. 56.S. Yang and D. J. Siegel, Intrinsic Conductivity in Sodium-air Battery Discharge Phases: Sodium Superoxide vs. Sodium Peroxide, Chem. Mater., 27, 3852 (2015) DOI: 10.1021/acs.chemmater.5b00285

  57. 57.M. D. Radin and D. J. Siegel, Non-Aqueous Metal-Air Batteries: Past, Present, and Future. Chapter 18 in “Rechargeable Batteries: Materials, Technologies and Trends,” Z. Zhang and S.S. Zhang, Editors. Springer (Switzerland), 2015. DOI: 10.1007/978-3-319-15458-9_18

  58. 58.N. Kumar, M. D. Radin, B. C. Wood, T. Ogitsu, and D. J. Siegel, Surface-Mediated Solvent Decomposition in Li-air Batteries: Impact of Peroxide and Superoxide Surface Terminations, J. Phys. Chem. C, 119, 9050 (2015). DOI: 10.1021/acs.jpcc.5b00256

  59. 59.Y. Ming, J. Purewal, J. Yang, C. Xu, R. Soltis, J. Warner, M. Veenstra, M. Gaab, U. Mueller, and D. J. Siegel, inetic Stability of MOF-5 in Humid Environments: Impact of Powder Densification, Humidity Level, and Exposure Time, Langmuir, 31, 4988 (2015). DOI:10.1021/acs.langmuir.5b00833

  60. 60.L. D. Griffith, A. E. S. Sleightholme, J. F. Mansfield, D. J. Siegel, and C. W. Monroe, Correlating Li/O2 Cell Capacity and Product Morphology with Discharge Current, ACS Applied Materials & Interfaces, 7, 7670 (2015). DOI: 10.1021/acsami.5b00574

  61. 61.H. Park, H. S. Koh, and D. J. Siegel, First Principles Study of Redox End-Members in Lithium-Sulfur Batteries, J. Phys. Chem. C, 119, 4675 (2015). DOI: 10.1021/jp513023v

  62. 62.M. D. Radin, C. W. Monroe, and D. J. Siegel, How Dopants Can Enhance Charge Transport in Li2O2, Chem. Mater. 27, 839 (2015). DOI: 10.1021/cm503874c

  63. 63.Y. Ming, H. Chi, R. Blaser, C. Xu, J. Yang, M. Veenstra, M. Gaab, U. Muller, C. Uher, D.J. Siegel, Anisotropic Thermal Transport in MOF-5 Composites, Int. J. of Heat and Mass Transfer, 82, 250 (2015). DOI: 10.1016/j.ijheatmasstransfer.2014.11.053

  64. 64.G. Vardar, A. Sleightholme, J. Naruse, H. Hiramatsu, D. J. Siegel, and C. W. Monroe, Electrochemistry of Magnesium Electrolytes in Ionic Liquids for Secondary Batteries, ACS Applied Materials & Interfaces 6, 18033 (2014). DOI: 10.1021/am5049064

  65. 65.A. Biswas, D. J. Siegel, and D. N. Seidman, Compositional Evolution of Q-Phase Precipitates in an Aluminum Alloy, Acta Mater., 75, 322 (2014). DOI: 10.1016/j.actamat.2014.05.001

  66. 66.F. Tian, M. D. Radin, and D. J. Siegel, Enhanced Charge Transport in Amorphous Li2O2, Chem. Mater., 26, 2952 (2014). DOI: 10.1021/cm5007372  Supporting Information.

  67. 67.N. Kumar, K. Leung, and D. J. Siegel, Crystal Surface and State of Charge Dependencies of Electrolyte Decomposition on LiMn2O4 Cathode, J. Electrochem. Soc., 161, E3059 (2014). DOI: 10.1149/2.009408jes

  68. 68.M. K. Rana, H. S. Koh, H. Zuberi, and D. J. Siegel, Methane Storage in Metal-Substituted Metal-Organic Frameworks: Thermodynamics, Usable Capacity, and the Impact of Enhanced Binding Sites, J. Phys. Chem. C, 118, 2929 (2014). DOI: 10.1021/jp4104273

  69. 69.J. Nanda, S. K. Martha, W. D. Porter, H. Wang, N. J. Dudney, M. D. Radin, and D. J. Siegel, Thermophysical Properties of LiFePO4 Cathodes with Carbonized Pitch Coatings and Organic Binders: Experiments and First-Principles Modeling, J. Power Sources, 251, 8 (2014). DOI: 10.1016/j.jpowsour.2013.11.022

  70. 70.Y. Ming, J. Purewal, D. Liu, A. Sudik, C. Xu, J. Yang, M. Veenstra, K. Rodes, R. Soltis, J. Warner, M. Gaab, U. Muller, and D. J. Siegel, Thermophysical Properties of MOF-5 Powders, Microporous and Mesoporous Materials, 185, 235 (2014). DOI: 10.1016/j.micromeso.2013.11.015

  71. 71.J. Goldsmith, A. G. Wong-Foy, M. J. Cafarella, and D. J. Siegel, Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Trade-Offs, Chem. Mater., 25, 3373 (2013). DOI: 10.1021/cm401978e

  72. 72.M. D. Radin and D. J. Siegel, Charge Transport in Lithium Peroxide: Relevance for Rechargeable Metal-Air Batteries, Energy Environ. Sci., 6, 2370 (2013). DOI: 10.1039/C3EE41632A. Supporting information available.

  73. 73.M. K. Rana, H. S. Koh, J. Hwang, and D. J. Siegel, Thermodynamic Screening of Metal-Substituted MOFs for Carbon Capture, Phys. Chem. Chem. Phys., 15, 4573 (2013). DOI:10.1039/C3CP50622C

  74. 74.C. Xu, J. Yang, M. Veenstra, A. Sudik, J. J. Purewal, Y. Ming, B. J. Hardy, J. Warner, S. Maurer, U. Mueller, and D. J. Siegel, Hydrogen Permeation and Diffusion in Densified MOF-5 Pellets, Int. J. Hydrogen Energy, 38, 3268 (2013). DOI:10.1016/j.ijhydene.2012.12.096

  75. 75.T. J. Wallington, J. E. Anderson, D. J. Siegel, M. A. Tamor, S. A. Mueller. S. L. Winkler, and O.J. Nielsen, Sustainable Mobility, Future Fuels, and the Periodic Table, J. Chem. Educ. 90, 440 (2013). DOI:10.1021/ed3004269

  76. 76.J. Purewal, D. Liu, A. Sudik, M. Veenstra, J. Yang, S. Maurer, U. Muller, and D. J. Siegel, Improved Hydrogen Storage and Thermal Conductivity in High-Density MOF-5 Composites, J. Phys. Chem. C, 116, 20199 (2012). DOI:10.1021/jp305524f

  77. 77.(Invited Article in Special Issue: First Principles Computations) M. D. Radin, F. Tian, and D. J. Siegel, Electronic Structure of Li2O2 (0001) Surfaces. J. Mater. Sci., 47, 7564 (2012). DOI: 10.1007/s10853-012-6552-6

  78. 78.D. Liu, J. J. Purewal, J. Yang, A. Sudik, S. Maurer, U. Mueller, J. Ni, and D. J. Siegel, MOF-5 Composites Exhibiting Improved Thermal Conductivity. Int. J. Hydrogen Energy 37, 6109 (2012).

  79. 79.M. D. Radin, J. F. Rodriguez, F. Tian, and D. J. Siegel, Lithium Peroxide Surfaces Are Metallic, Lithium Oxide Surfaces Are Not. J. Am. Chem. Soc., 134, 1093 (2012).

  80. 80.M. K. Rana, H. S. Koh, J. Hwang, and D. J. Siegel, Comparing van der Waals Density Functionals for CO2 Adsorption in Metal Organic Frameworks, J. Phys. Chem. C, 116, 16957 (2012). DOI: 10.1021/jp3051164

  81. 81.J. Purewal, D. Liu, J. Yang, A. Sudik, D. J. Siegel, S. Maurer, and U. Muller, Increased volumetric hydrogen uptake in MOF-5 by powder densification. Int. J. Hydrogen Energy 37, 2723 (2012).

  82. 82.M. D. Radin, J. F. Rodriguez, and D. J. Siegel, Lithium Peroxide Surfaces and Point Defects: Relevance for Li-air Batteries, Proceedings of the Battery Congress, M. N. Uddin, Ed., 60, 6 (2011). ISBN: 978-1-61782-843-0.

  83. 83.A. Biswas, D. J. Siegel, C. Wolverton, and D. N. Seidman, Precipitates in Al-Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater. 59, 6187 (2011).

  84. 84.J. C. Hamilton, D. J. Siegel, B. P. Uberuagua, and A. F. Voter, Isomerization rates and mechanisms for the 38-atom Lennard-Jones cluster determined using molecular dynamics and temperature accelerated molecular dynamics. Preprint available.

  85. 85.(Invited Review) J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel, High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery, Chem. Soc. Rev. 39, 656 (2010).

  86. 86.A. Biswas, D. J. Siegel, and D. N. Seidman, Simultaneous Segregation at Coherent and Semi-coherent Heterophase Interfaces. Phys. Rev. Lett. 105, 076102 (2010).

  87. 87.S. J. Moura, J. B. Siegel, D. J. Siegel, H. K. Fathy, and A. G. Stefanopoulou, Education on Vehicle Electrification: Battery Systems, Fuel Cells, and Hydrogen, Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC10), Sept. 1-3, 2010 Lillie, France. DOI: 10.1109/VPPC.2010.5729150

  88. 88.A. Sudik, J, Yang, D. J. Siegel, C. Wolverton, R. O. Carter, and A. Drews, Impact of Stoichiometry on the Hydrogen Storage Properties of LiNH2-LiBH4-MgH2 Ternary Composites, J. Phys. Chem. C 113, 2004 (2009).

  89. 89.J. Yang, A. Sudik, D. J. Siegel, D. Halliday, A. Drews, R. O Carter, C. Wolverton, G. J. Lewis, J. W. A. Sachtler, J. J. Low, S. A. Faheem, D. A. Lesch, and V. Ozolins, A Self-Catalyzing Hydrogen Storage Material, Angew. Chem. Int. Ed. 47, 882 (2008).

  90. 90.(Chosen for JPCM “Top Papers 2008.”) C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, and V. Ozolins, Discovery of Novel Hydrogen Storage Materials: An Atomic Scale Computational Approach, J. Phys.: Cond. Matter 20, 064228 (2008).

  91. 91.D. J. Siegel, C. Wolverton, and V. Ozolins, Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and their Application to Destabilized Hydride Mixtures, Phys. Rev. B 76, 134102 (2007).

  92. 92.D. J. Siegel, C. Wolverton, and V. Ozolins, First Principles Study of the Crystal Structure and Dehydrogenation Pathways of Li4BN3H10, Phys. Rev. B 75, 014101 (2007).

  93. 93.J. Yang, A. Sudik, D. J. Siegel, D. Halliday, A. Drews, R. Carter, C. Wolverton, G. J. Lewis, J. W. A. Sachtler, J. J. Low, S. A. Faheem, D. A. Lesch, V. Ozolins, Hydrogen Storage Properties of 2 LiNH2 + LiBH4 + MgH2, J. Alloys Comp. 446-447, 345 (2007).

  94. 94.G. J. Lewis, J. W. A. Sachtler, J. J. Low, D. A. Lesch, S. A. Faheem, P. M. Dosek, L. M. Knight, C. M. Jensen, J. Yang, A. Sudik, D. J. Siegel, C. Wolverton, V. Ozolins, and S. Zhang, High-Throughput Screening of the Ternary LiNH2-MgH2-LiBH4 Phase Diagram, J. Alloys and Comp. 446-447, 355 (2007).

  95. 95.D. J. Siegel, Generalized Stacking Fault Energies, Ductilities, and Twinnabilities of Ni and Selected Ni Alloys, Appl. Phys. Lett. 87, 121901 (2005).

  96. 96.D. J. Siegel and J. C. Hamilton, Computational Study of C Segregation and Diffusion within a Ni Grain Boundary, Acta Mater. 53, 87 (2005).

  97. 97.D. J. Siegel, M. van Schilfgaarde, J. C. Hamilton, Understanding the Magnetocatalytic Effect: Magnetism as a Driving Force for Surface Segregation, Phys. Rev. Lett. 92, 086101 (2004).

  98. 98.J. C. Hamilton, D. J. Siegel, I. Daruka, F. Leonard, Why do Grain Boundaries Exhibit Finite Facet Lengths?, Phys. Rev. Lett. 90, 246102 (2003).

  99. 99.D. J. Siegel and J. C. Hamilton, First-Principles Study of the Solubility, Diffusion, and Clustering of C in Ni, Phys. Rev. B 68, 094105 (2003).

  100. 100.D. J. Siegel, L. G. Hector, Jr, and J. B. Adams, Ab initio Study of Al-Ceramic Interfacial Adhesion, Phys. Rev. B 67, 092105 (2003).

  101. 101.Y. Li, D. J. Siegel, J. B. Adams, X-Y Liu, Embedded-Atom Method Ta Potential Developed by the Force-Matching Method, Phys. Rev. B 67, 125101 (2003).

  102. 102.D. J. Siegel, L. G. Hector, Jr, and J. B. Adams, First-Principles Study of Metal–carbide/ nitride Adhesion: Al/VC vs. Al/VN, Acta Mater. 50, 619 (2002).

  103. 103.D. J. Siegel, L. G. Hector, Jr, and J. B. Adams, Adhesion, Stability, and Bonding at Metal/Metal-Carbide Interfaces: Al/WC, Surf. Sci. 498, 321 (2002).

  104. 104.D. J. Siegel, L. G. Hector, Jr, and J. B. Adams, Adhesion, Atomic Structure, and Bonding at the Al(111)-Al2O3 (0001) Interface: A First Principles Study, Phys. Rev. B 65, 085415 (2002).

  105. 105.L. G. Hector, Jr., G. A. Nitowski, S. M. Opalka, L. Weiserman, D. J. Siegel, H. Yu, J. B. Adams, Investigation of Vinyl Phosphonic Acid/Hydroxylated α-AlO(0001) Reaction Enthalpies, Surf. Sci. 494, 1 (2001).

  106. 106.(Invited article) J. B. Adams, L. G. Hector, Jr, D. J. Siegel, H. Yu, J. Zhong, Y. T. Cheng, Adhesion, Lubrication, and Wear on the Atomic Scale, Surf. Interface Analysis 31, 619 (2001).

  107. 107.D. J. Siegel, L. G. Hector, Jr, and J. B. Adams, Stoichiometry and Adhesion of Al/WC, Mater. Res. Soc. Symp. Proc. 677, AA.4.25, (2001).

  108. 108.D. J. Siegel, L. G. Hector, Jr, and J. B. Adams, Electronic Structure and Bonding at the Al-Terminated Al/Al2O3 Interface: A First-Principles Study, Mater. Res. Soc. Symp. Proc. 654, AA 4.2, (2001).

  109. 109.D. J. Siegel, First-Principles Study of Metal-Ceramic Interfaces, PhD Dissertation, Department of Physics, University of Illinois at Urbana-Champaign (2001).

  110. 110.A. Landa, P. Wynblatt, D. J. Siegel, J.B. Adams, O.N. Mryasov, and X.Y. Liu, Development of Glue-type Potentials for the Al-Pb System: Phase Diagram Calculation, Acta Mater. 48, 1753 (2000).

  111. 111.L. G. Hector, Jr., D. J. Siegel, and J. B. Adams, Atomistic Simulation of Adhesion and Adhesive Transfer at Metal/Metal-Oxide Interfaces, Proc. Integration of Material, Process and Product Design, N. Zabras, R. Becker, S. Ghosh, and L. Lalli, Eds., p. 39-46 (1999). A. A. Balkema Publishers, Leiden, Netherlands. ISBN: 90-5809-101-5.

  112. 112.P.L. Taylor and D. J. Siegel, Approach to Equilibrium in Cholesteric Liquid Crystals, Cond. Matter Mat. Phys. (CMMP’95) Proc. Institute of Physics, London, p.93 (1996).

Patents and Patent Applications

  1. 1.US 7,790,133: Multi-component Hydrogen Storage Material

  2. 2.US 8,038,980: Hydrogen Storage Materials Containing Ammonia Borane

  3. 3.US 8,418,841: Method of Enhancing Thermal Conductivity in Hydrogen Storage Systems (issued 4/16/2013)

  4. 4.US 8,790,616: Hybrid Hydrogen Storage System and Method of Using the Same (issued 7/29/2014)

  5. 5.US 8,883,117: Method of Enhancing Thermal Conductivity in Hydrogen Storage Systems (issued 11/11/2014).

  6. 6.US 8,899,096: High-Throughput Modular Hydrogen Storage Engineering Properties Analyzer (issued 12/2/2014).

  7. 7.US 8,968,942: Metal Oxygen Battery Containing Oxygen Storage Materials (issued 3/3/2015).

  8. 8.USPTO Application 61/097,999: Hydrogen Storage Materials

  9. 9.USPTO Application 14/955,397: Magnesium Oxygen Battery, Filed 12/1/2015. Inventors: Junichi Naruse, Donald Siegel, Jeffrey Smith, Gulin Vardar, and Charles Monroe.

  10. 10.USPTO Application 14/955,484: Rechargeable Magnesium Oxygen Battery, Filed 12/1/2015. Inventors: Junichi Naruse, Donald Siegel, Jeffrey Smith, Gulin Vardar, and Charles Monroe.

  11. 11.USPTO Application 14/955,618: Magnesium Oxygen Battery, Filed 12/1/2015. Inventors: Junichi Naruse and Donald Siegel.

  12. 12.USPTO Application 81187993US: Methods of Enhancing Kinetic Properties of Hydrogen Storage Materials by Self-Catalysis 12/757068

  13. 13.USPTO Provisional Patent Application 62738385: Systems And Methods For Improved Solid-State Electrolytes, Filed 09/28/2018. Inventors: D.J. Siegel and K. Kim

  14. 14.U.S. Provisional Patent Application 63/139,987; Salt Hydrate Compositions for Thermal Energy Storage Systems, Filed 01/21/21. Inventors: D. J. Siegel and Steven Kiyabu.

Invited Presentations

  1. 1.Texas A&M University, Department of Mechanical Engineering, October 5, 2022, College Station, TX.

  2. 2.Telluride Science Research Center Workshop on “Materials Chemistry in Electrochemical Energy Storage,” September 26-30, 2022, Telluride, CO.

  3. 3.Euromech Colloquium: MULTISCALE MECHANICS, MULTIPHYSICS MODELING AND SIMULATIONS FOR ENERGY STORAGE, August 29-31, 2022, Sirmione, Lake Garda, Italy.

  4. 4.Symposium on “Multiscale and Multiphysics Modelling of the Structural and Mechanical Properties of Energy Storage Materials” July 31-August 5, 2022, Yokohama, Japan.

  5. 5.23rd International Conference on Solid State Ionics (SSI-23), July 17-22, Boston, MA.

  6. 6.Gordon Research Conference – Batteries, February 20-25, 2022, Ventura, CA United States (Postponed due to Covid)

  7. 7.MRS 2021 Fall Meeting, Symposium on “Advanced Materials for Hydrogen and Fuel Cell Technologies,” Nov. 28 – Dec. 3, 2021, Boston, MA.

  8. 8.Modeling and Design of Molecular Materials, September 21-24, 2020, Gdańsk, Poland. POSTPONED due to coronavirus pandemic.

  9. 9.Thailand Machine Learning for Chemistry Competition, October 22nd, 2021.

  10. 10.MRS 2021 Spring Meeting, Symposium on “Progress in Understanding Charge Transfer at Electrochemical Interfaces in Batteries,” April 18-23, 2021, Seattle, WA.

  11. 11.Nano Korea 2020, session on ‘Nanotechnology for Next Generation Batteries,’ July 1-3, 2020, Goyang – Korea International Exhibition Center (KINTEX), South Korea. Held virtually due to coronavirus pandemic.

  12. 12.3rd International Conference on Hydrogen & Fuel Cell Technologies, March 20-22, 2020, Hammamet, Tunisia. Postponed and held virtually (Nov. 14-15, 2020) due to coronavirus pandemic.

  13. 13.Understanding Fast-ion Conduction in Solid Electrolytes, Kavli Royal Society Centre, Chicheley Hall, March 16-17, 2020, Buckinghamshire, UK. Postponed due to coronavirus pandemic.

  14. 14.Gordon Research Conference – Batteries, February 16-21, 2020, Ventura, CA

  15. 15.Technical University of Denmark (DTU), Department of Energy Conversion and Storage Department Colloquium, February 14, 2020, Lyngby, Denmark.

  16. 16.Electrochemical Society (ECS) Fall Meeting, Symposium A07 “Solid State Batteries,” October 13-17, 2019, Atlanta, GA.

  17. 17.Electrochemical Society (ECS) Fall Meeting, Symposium I05 “Crosscutting Materials Innovation for Transformational Chemical and Electrochemical Energy Conversion Technologies,” October 13-17, 2019, Atlanta, GA.

  18. 18.XIX International Congress of the Mexican Hydrogen Society, Materials Institute Research (IIM) Morelia Unit, Mexican National Autonomous University, October 1-4, 2019, Morelia City, Michoacán, Mexico.

  19. 19.2nd World Conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors, September 24-27, 2019, Shizuoka, Japan

  20. 20.Moscow State University – Skoltech 4th International Conference of Young Scientists, September 15-18, Moscow, Russia.

  21. 21.XXI Mendeleev Congress of General and Applied Chemistry, Symposium on “Elemental Materials for Electrochemical Energy,” September 9-13, 2019, St. Petersburg, Russia.

  22. 22.American Chemical Society (ACS) Fall Meeting, Symposium on “Advances in Fundamental Research for Energy Storage Beyond Lithium Ion,” August 25-29, 2019, San Diego, CA.

  23. 23.ECS ECEE 2019: Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage, symposium on “Mass and Charge Transfer across Electrochemical Interfaces,” July 21-26, 2019, Glasgow, Scotland. 

  24. 24.ICE 2019: International Conference on Electroceramics, July 14-19, 2019, Lausanne, Switzerland.

  25. 25.Gordon Research Conference on Hydrogen-Metal Systems, session on “Advancements in Porous Materials for Hydrogen Adsorption,” June 30 -- July 5, 2019, Barcelona, Spain.

  26. 26.MRS 2019 Spring Meeting, Symposium S-19 ES04 “Solid-State Electrochemical Energy Storage," April 22-26, 2019, Phoenix, AZ.

  27. 27.‘NGenE’ Next Generation Electrochemistry Summer Institute, University of Illinois at Chicago, June 3-7, 2019, Chicago, IL.

  28. 28.Argonne National Laboratory, Materials Science Division Colloquium, April 4, 2019, Argonne, IL.

  29. 29.American Chemical Society’s 257th National Meeting, symposium on “Innovative Chemistry and Materials for Electrochemical Energy Storage,” March 31-April 4, 2019, Orlando, FL.

  30. 30.TMS 2019 Annual Meeting, 5th Symposium on Advanced Materials for Energy Conversion and Storage, March 10-14, 2019, San Antonio, TX.

  31. 31.Korea Institute of Science and Technology, Center for Energy Storage Research, February 20, 2019, Seoul, South Korea.

  32. 32.Seoul National University, School of Chemical and Biological Engineering, February 19, 2019, Seoul, South Korea.

  33. 33.Korea Advanced Institute of Science & Technology (KAIST), Department of Chemistry – School of Molecular Science, BK21 Lectureship, February 18, 2019, Daejeon, South Korea.

  34. 34.University of Illinois at Urbana-Champaign, Materials Science and Engineering Department Colloquium, November 12, 2018, Urbana, IL.

  35. 35.3rd National Conference on Materials for Energy Conversion and Storage, October 18-20, 2018, IIT-BHU, Varanasi, India

  36. 36.2nd Bosch Energy Research Network (BERN) Symposium on Innovative Energy Research, September 6-7, 2018, Sunnyvale, CA.

  37. 37.Electrochemical Society (ECS) Fall Meeting, “12th Solid State Ionic Devices (SSID 12) Symposium,” September 30 - October 4, 2018, Cancun, Mexico.

  38. 38.Electrochemical Society (ECS) Fall Meeting, symposium on “Batteries and Energy Storage,” September 30 - October 4, 2018, Cancun, Mexico.

  39. 39.American Chemical Society’s 256th National Meeting, symposium on “Electrochemical Interfaces,” August 19-23, 2018, Boston, MA.

  40. 40.American Chemical Society’s 256th National Meeting, symposium on “Nanoscience of Energy Storage,” August 19-23, 2018, Boston, MA.

  41. 41.3rd Li-SM3 Conference: Lithium-Sulfur Batteries: Mechanisms, Modelling and Materials, April 25-26, 2018, Chicago, IL.

  42. 42.TMS 2018 Spring Meeting, Symposium on “Materials for Energy Conversion and Storage,” March 11-15, 2018, Phoenix, AZ.

  43. 43.Northwestern University, Materials Science and Engineering Department Seminar, September 26, 2017. Evanston, IL.

  44. 44.Indian Institute of Science Education and Research (IISER-BPR), September 4, 2017, Berhampur, India.

  45. 45.1st World Congress on Lithium Garnets, Competitors and Beyond for Advanced Batteries, September 6-9, 2017, Puducherry, India.

  46. 46.Telluride Science Research Center, Computational Materials Chemistry Workshop, August 7-11, 2017, Telluride, CO.

  47. 47.Bosch Energy Research Network Symposium on Innovative Energy Research, July 27-28, 2017, Palo Alto, CA.

  48. 48.Waterloo Institute for Nanotechnology, University of Waterloo, May 8, 2017, Waterloo, ON, Canada.

  49. 49.TMS 2017 Annual Meeting & Exhibition, Symposium on “Advanced Materials for Energy Conversion and Storage,” February 26 – March 2, San Diego, CA.

  50. 50.TMS 2017 Annual Meeting & Exhibition, Symposium on “Computational Materials Discovery and Optimization – From Bulk to Materials Interfaces and 2D Materials,” February 26 – March 2, San Diego, CA.

  51. 51.MRS 2017 Spring Meeting, Symposium on “Mechanics of Energy Storage and Conversion,” April 17-21, Phoenix, AZ.

  52. 52.XXV International Materials Research Congress (IMRC), August 14-19, 2016, Cancun, Mexico.

  53. 53.Danish Battery Society Annual Symposium, April 7th, 2016. Copenhagen, Denmark.

  54. 54.Technical University of Denmark (DTU), Department of Energy Conversion and Storage Colloquium, February 1st, 2016, Lyngby, Denmark.

  55. 55.University of Florida, Materials Science and Mechanical & Aerospace Engineering Seminar, December 7th, 2015, Gainesville, FL.

  56. 56.Nordic Battery Conference (NORDBATT2), December 2-3, 2015. Trondheim, Norway.

  57. 57.Lithium Battery Power 2015, November 17-19, 2015. Baltimore, MD.

  58. 58.Electrochemical Society Fall Meeting, October 11-16, 2015, Phoenix, AZ.

  59. 59.NSF Workshop on “Rise of Data in Materials Research,” June 29-30, 2015, College Park, MD.

  60. 60.Telluride Science Research Center, Computational Materials Chemistry Workshop, June 23-27, 2015, Telluride, CO.

  61. 61.American Ceramic Society -- 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications (CMCEE), June 14-19, 2015, Vancouver, British Columbia.

  62. 62.American Chemical Society National Meeting, symposium on “Natural Resource Capture, Storage, and Energy Conversion,” March 22-26, 2015, Denver, CO.

  63. 63.American Chemical Society National Meeting, symposium on “2D Materials for Energy and Fuel,” March 22-26, 2015, Denver, CO.

  64. 64.U.S. Department of Energy Hydrogen Storage Workshop, January 27-29, 2015, National Renewable Energy Laboratory, Golden, CO.

  65. 65.University of Michigan Transportation Research Institute (UMTRI), Automotive Futures Conference: Inside China: Understanding China’s Current and Future Automotive Industry, November 12, 2014, Ann Arbor, MI.

  66. 66.The Battery Show, September 16-18, Novi, MI.

  67. 67.U.S.-China Electric Vehicle and Battery Technology Workshop, August 18-19, Seattle, WA.

  68. 68.Telluride Science Research Center, Battery Materials Workshop, July 14-18, 2014, Telluride, CO.

  69. 69.1st International Symposium on Sustainable Secondary Battery Manufacturing and Recycling, June 29-July 4, 2014, Cancun, Mexico

  70. 70.U.S. National Congress on Theoretical and Applied Mechanics, June 15-20, 2014 East Lansing, MI

  71. 71.SIT Investment Associates’ Annual Client Workshop, Feb. 13-16, 2014, Carlsbad, CA

  72. 72.Gilbreth Lecture: NAE National Meeting, Feb. 6, 2015, Irvine, CA

  73. 73.American Ceramic Society -- Electronic Materials & Applications Conference, January 22-24, 2014, Orlando, FL.

  74. 74.8th U.S.-China Electric Vehicle and Battery Technology Workshop, September 20-22, 2013, Chengdu, China.

  75. 75.The Battery Show, September 17-19, 2013 Novi, Michigan.

  76. 76.2nd ReLiable Li-Air Workshop, September 9-10, 2013 Copenhagen, Denmark

  77. 77.American Chemical Society National Meeting, “Chemical Mechanisms in Advanced Materials,” September 8-12, 2013, Indianapolis.

  78. 78.Denso Research Laboratories, August 23, 2013, Nisshin, Japan.

  79. 79.RIKEN Advanced Science Institute, August 22, 2013, Wako, Japan.

  80. 80.Beyond Lithium Ion VI, June 4-6, 2013, Boulder, Colorado.

  81. 81.Kavli Frontiers of Science, 5th Indo-American Symposium, “Materials for Energy Conversion and Storage: Discovery Through Experimental and Computational Approaches,” April 7-10, 2013, India.

  82. 82.Detroit Section of the Electrochemical Society, February 13th, 2013, Southfield, MI.

  83. 83.U.S. Dept. of Energy, Adsorbent Hydrogen Storage Workshop, November 27, 2012, Washington, DC.

  84. 84.Denso International America Inc., Research and Engineering Division, June 29, 2012, Southfield, MI.

  85. 85.WHEC 2012, World Hydrogen Energy Conference, June 3-7, 2012, Toronto, Canada.

  86. 86.5th US-China Electric Vehicle and Battery Technology Workshop, April 16-17, Hangzhou, China.

  87. 87.German-American Frontiers of Engineering Symposium, “Energy Storage,” March 28-31, 2012, Potsdam, Germany. A copy of this presentation is available here.

  88. 88.American Chemical Society National Meeting, “Integrating Theory and Experiment for Discovering the Fundamental Chemistry of the Li-air and Other Metal-air Battery Systems,” March 25-29, 2012, San Diego.

  89. 89.TMS 2012 Annual Meeting, “Solid-State Interfaces II: Toward an Atomic-Scale Understanding of Structure, Properties, and Behavior Through Theory and Experiment,” March 11-15, 2012, Orlando.

  90. 90.American Ceramic Society -- Electronic Materials & Applications Conference, symposium on “Energy Storage Materials and Systems,” Jan. 18-20, 2012, Orlando.

  91. 91.4th US-China Electric Vehicle and Battery Technology Workshop, August 4-5, 2011, Argonne, IL.

  92. 92.Frontiers of Energy Materials Workshop, Penn State, May 18, 2011.

  93. 93.General Motors R&D Center, Warren, MI, Aug. 10, 2011.

  94. 94.MS&T 2011, “7th Annual Symposium on Phase Stability, Diffusion, Kinetics, and Their Applications (PSDK),” October 2011, Columbus.

  95. 95.TMS 2011 Annual Meeting, 10th Symposium on “Computational Thermodynamics and Kinetics of Materials, ” March 2011, San Diego

  96. 96.Chemistry Department Seminar, University of Detroit Mercy, Nov. 9, 2010.

  97. 97.MRS 2010 Spring Meeting, Symposium Y: “Computational Approaches to Materials for Energy,” April 2010, San Francisco

  98. 98.School of Mechanical, Aerospace, Chemical, and Materials Engineering, Arizona State University, Nov. 13, 2009, Tempe, AZ

  99. 99.Physics Department Colloquium, Case Western Reserve University, Oct. 1, 2009, Cleveland, OH.

  100. 100.XVIII International Materials Research Congress 2009, August 16-21, Cancun, Mexico.

  101. 101.NIST Workshop on Atomistic Simulations for Industrial Needs, April 27-28, 2009, Gaithersburg, MD.

  102. 102.Japan Institute of Metals 2009 Spring Meeting, Session S1: “Hydrogen Storage Materials,” March 28-30, Tokyo, Japan.

  103. 103.APS 2009 March Meeting, Invited Session: “Computational Design of Hydrogen Storage Materials,” March 16-20, Pittsburgh, PA.

  104. 104.Chemical Engineering and Materials Science Dept. Colloquium, Michigan State University, March 5, 2009, East Lansing, MI.

  105. 105.MRS 2009 Spring Meeting “Symposium HH: Quantitative Characterization of Nanostructured Materials,” April 13-17, San Francisco, CA.

  106. 106.MS&T’08 Conference “Discovery and Optimization of Materials through Computational Design,” October 5-9, Pittsburgh, PA.

  107. 107.NIST Workshop “Atomistic Simulations for Industrial Needs,” April 28-29, 2008, Gaithersburg, MD.

  108. 108.MRS 2008 Spring Meeting “DOE Theory Focus Session on Hydrogen Storage Materials,” March 24, San Francisco.

  109. 109.TMS Annual Meeting: “Career Forum,” March 2008, New Orleans.

  110. 110.University of Michigan, Guest Lecturer for MSE 250, Materials for Energy, Nov. 2007.

  111. 111.Erwin Schrodinger Institute–University of Vienna, Theory Meets Industry Workshop, 12 June 2007

  112. 112.University of Michigan, Materials Science and Engineering Colloquium, 2 February 2007

  113. 113.Lawrence Livermore National Laboratory, Metals and Alloys Group, 14 April 2005

  114. 114.University of Texas at El Paso, Department of Physics Colloquium, 6 April 2005

  115. 115.Ford Research Laboratory, Physical and Environmental Sciences Department, 4 April 2005

  116. 116.Pacific Northwest National Laboratory, Energy Science and Technology Directorate, Jan. 2005

  117. 117.University of Tennessee, Department of Materials Science and Engineering, October 2004

  118. 118.Oak Ridge National Laboratory, Joint Institute for Computational Sciences, October 2004

  119. 119.Oxide-Metal Interfaces: Progress and Challenges, October 2001, Lyon, France

  120. 120.Advances in Surface Engineering—Fundamentals and Applications, Materials Research Society Meeting, November 2001, Boston, MA

  121. 121.NIST Workshop on Modeling and Simulation of Structure Formation in Liquid Crystals, Polymers, and their Mixtures, June 1995, Gaithersburg, MD