No. | Authors | Title (and PDF, as published) | Reference (journal and arXiv link) |
250 | A. Meador-Woodruff and Dragan Huterer | BBN-simple: How to Bake a Universe-Sized Cake | arXiv:2412.07893 |
251 | S. Bocquet et al (DES Collaboration) | Multiprobe Cosmology from the Abundance of SPT Clusters and DES Galaxy Clustering and Weak Lensing | arXiv:2412.07765 |
249 | E. Chaussidon et al (DESI collaboration) | Constraining primordial non-Gaussianity with DESI 2024 LRG and QSO samples | arXiv:2411.17623 |
248 | E. Zaborovsky et al (DESI Collaboration) | A Sound Horizon-Free Measurement of H0 in DESI 2024 | arXiv:2411.16677 |
247 | M. Ishak et al (DESI Collaboration) | Modified Gravity Constraints from the Full Shape Modeling of Clustering Measurements from DESI 2024 | arXiv:2411.12026 |
246 | DESI Collaboration | DESI 2024 II: Sample Definitions, Survey Characteristics, and Two-point Clustering Statistics | arXiv:2411.12020 |
245 | DESI Collaboration | DESI 2024 V: Full-Shape galaxy clustering from Galaxies and Quasars | arXiv:2411.12021 |
244 | DESI Collaboration | DESI 2024 VII: Cosmological Constraints from the Full-Shape Modeling of Clustering Measurements | arXiv:2411.12022 |
243 | J. McCullough et al (DES Collaboration) | Dark Energy Survey Year 3: Blue Shear | arXiv:2410.22272 |
242 | R. Chen et al (DES Collaboration) | Evaluating Cosmological Biases using Photometric Redshifts for Type Ia Supernova Cosmology with the Dark Energy Survey Supernova Program | arXiv:2407.16744 |
241 | L. Faga et al (DES Collaboration) | Dark Energy Survey Year 3 Results: Cosmology from galaxy clustering and galaxy-galaxy lensing in harmonic space | arXiv:2406.12675 |
240 | R. Camilleri et al (DES Collaboration) | The Dark Energy Survey Supernova Program: An updated measurement of the Hubble constant using the Inverse Distance Ladder | arXiv:2406.05049 |
239 | P. Shah et al (DES Collaboration) | The Dark Energy Survey : Detection of weak lensing magnification of supernovae and constraints on dark matter haloes | MNRAS 532, 932 (2024), arXiv:2406.05047 |
238 | U. Andrade et al (DESI Collaboration) | Validating the Galaxy and Quasar Catalog-Level Blinding Scheme for the DESI 2024 analysis | arXiv:2404.07282 |
237 | L. Bigwood et al (DESI Collaboration) | Weak lensing combined with the kinetic Sunyaev Zel'dovich effect: A study of baryonic feedback | MNRAS 534, 655 (2024), arXiv:2404.06098 |
236 | DESI Collaboration | DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations | arXiv:2404.03002 |
235 | DESI Collaboration | DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest | arXiv:2404.03001 |
234 | DESI Collaboration | DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars | arXiv:2404.03000 |
233 | N. Jeffrey et al. (DES collaboration) | Dark Energy Survey Year 3 results: likelihood-free, simulation-based wCDM inference with neural compression of weak-lensing map statistics | arXiv:2403.02314 |
232 | J. Mena-Fernandez et al. (DES collaboration) | Dark Energy Survey: Galaxy Sample for the Baryonic Acoustic Oscillation Measurement from the Final Dataset | Phys. Rev. D 110, 063514 (2024), arXiv:2402.10697 |
231 | T.M.C. Abbott et al. (DES collaboration) | Dark Energy Survey: A 2.1% measurement of the angular Baryonic Acoustic Oscillation scale at redshift zeff=0.85 from the final dataset | Phys. Rev. D 110, 063515 (2024), arXiv:2402.10696 |
230 | M. Vincenzi et al. (DES collaboration) | The Dark Energy Survey Supernova Program: Cosmological Analysis and Systematic Uncertainties | Astrophys. J. 975, 86 (2024), arXiv:2401.02945 |
229 | T.M.C. Abbott et al. (DES collaboration) | The Dark Energy Survey: Cosmology Results With ∼1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset | Astrophys. J. 973, L14 (2024), arXiv:2401.02929 |
228 | S. Bocquet et al. (DES and SPT collaborations) | SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos | Phys. Rev. D 110, 083510 (2024), arXiv:2401.02075 |
227 | J. Pan, D. Huterer, F. Andrade and C. Avestruz | Compressed baryon acoustic oscillation analysis is robust to modified-gravity models | JCAP 06 (2024) 051, arXiv:2312.05177 |
226 | D. Huterer | Hubble Tension | Eur. Phys. J. Plus (2023) 138:1004 |
225 | D. Huterer and H.-Y. Wu | Not empty enough: a local void cannot solve the H_0 tension | arXiv:2309.05749 |
224 | G.A. Marques et al (DES and ACT collaborations) | Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4 | arXiv:2306.17268 |
223 | A.G. Adame et al (DESI collaboration) | The Early Data Release of the Dark Energy Spectroscopic Instrument | Astron. J. 168 58 (2024), arXiv:2306.06308 |
222 | A.G. Adame et al (DESI collaboration) | Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument | Astron. J. 167 62 (2024), arXiv:2306.06307 |
221 | T.M.C. Abbott et al (DES and KiDS collaborations) | DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys | arXiv:2305.17173 |
220 | Y. Wen, M. Nguyen, and D. Huterer | Sweeping Horndeski Canvas: New Growth-Rate Parameterization for Modified-Gravity Theories | JCAP 09 (2023) 028, arXiv:2304.07281 |
219 | M. Nguyen, D. Huterer and Y. Wen | Evidence for suppression of structure growth in the concordance cosmological model | Phys. Rev. Lett. 131, 111001 (2023), arXiv:2302.01331, Minh's talk on Youtube |
218 | D. Huterer | Growth of Cosmic Structure | Astron. Astrophys. Rev. (2023)31:2, arXiv:2212.05003 |
217 | K.C. Chan et al (DES collaboration) | Dark Energy Survey Year 3 Results: Measurement of the Baryon Acoustic Oscillations with Three-dimensional Clustering | Phys. Rev. D 106, 123502 (2022), arXiv:2210.05057 |
216 | J. Elvin-Poole et al (DES collaboration) | Dark Energy Survey Year 3 results: Magnification modeling and impact on cosmological constraints from galaxy clustering and galaxy-galaxy lensing | MNRAS 523, 3649 (2023), arXiv:2209.09782 |
215 | D. Schlegel et al | The MegaMapper: A Stage-5 Spectroscopic Instrument Concept for the Study of Inflation and Dark Energy | arXiv:2209.04322 |
214 | D. Schlegel et al | A Spectroscopic Road Map for Cosmic Frontier: DESI, DESI-II, Stage-5 | arXiv:2207.03585 |
213 | T. Abbott et al (DES collaboration) | Dark Energy Survey Year 3 Results: Constraints on extensions to ΛCDM with weak lensing and galaxy clustering | Phys. Rev. D 107, 083504 (2023), arXiv:2207.05766 |
212 | M. Dixon et al (DES collaboration) | Using Host Galaxy Spectroscopy to Explore Systematics in the Standardisation of Type Ia Supernovae | MNRAS 517, 4291 (2022), arXiv:2206.12085 |
211 | T. Abbott et al (DES collaboration) | Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck III: Combined cosmological constraints | Phys. Rev. D 107, 023531 (2023), arXiv:2206.10824 |
210 | A. Chen et al (DES collaboration) | Constraining the Baryonic Feedback with Cosmic Shear Using the DES Year-3 Small-Scale Measurements | MNRAS 518, 5340 (2023), arXiv:2206.08591 |
209 | B. Abareshi et al (DESI collaboration) | Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument | arXiv:2205.10939 |
208 | C. Chang et al (DES and SPT collaborations) | Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck II: Cross-correlation measurements and cosmological constraints | Phys. Rev. D 107, 023530 (2023), arXiv:2203.12440 |
207 | Y. Omori et al (DES and SPT collaborations) | Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck I: Construction of CMB Lensing Maps and Modeling Choices | Phys. Rev. D 107, 023529 (2023), arXiv:2203.12439 |
206 | A. Kovacs et al (DES collaboration) | Dark Energy Survey Year 3 results: imprints of cosmic voids and superclusters in the Planck CMB lensing map | MNRAS 515, 4417 (2022), arXiv:2203.11306 |
205 | C. Doux et al (DES collaboration) | Dark Energy Survey Year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space | MNRAS 515, 1942 (2022), arXiv:2203.07128 |
204 | P. Lemos, N. Weaverdyck et al (DES collaboration) | Robust sampling for weak lensing and clustering analyses with the Dark Energy Survey | arXiv:2202.08233 |
203 | A. Amon et al (DES collaboration) | Consistent lensing and clustering in a low-S8 Universe with BOSS, DES Year 3, HSC Year 1 and KiDS-1000 | MNRAS 518, 477 (2023), arXiv:2202.07440 |
202 | S. Mau et al (DES collaboration) | Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies | Astrophys. J. 932, 128 (2022), arXiv:2221.11740 |
201 | L. F. Secco et al (DES collaboration) | Dark Energy Survey Year 3 Results: Three-Point Shear Correlations and Mass Aperture Moments | Phys. Rev. D 105, 103537 (2022), arXiv:2221.05227 |
200 | A. Kovacs et al (DES collaboration) | The DES view of the Eridanus supervoid and the CMB Cold Spot | MNRAS 510, 216 (2022), arXiv:2112.07699 |
199 | E. Trott and D. Huterer | Challenges for the statistical gravitational-wave method to measure the Hubble constant | Phys.Dark Univ. 40 (2023) 101208, arXiv:2112.00241 |
198 | H. Camacho et al (DES collaboration) | Cosmic Shear in Harmonic Space from the Dark Energy Survey Year 1 Data: Compatibility with Configuration Space Results | MNRAS 516, 3 (2022), arXiv:2111.07203 |
198 | Y. Wen, E. Nesbit, D. Huterer and G.S. Watson | Misinterpreting Modified Gravity as Dark Energy: a Quantitative Study | JCAP 03 (2022) 042, arXiv:2111.02866 |
197 | M. Gatti et al (DES collaboration) | Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps | Phys. Rev. D 106, 083509 (2022), arXiv:2110.10141 |
196 | D. Zurcher et al (DES collaboration) | Dark Energy Survey Year 3 results: Cosmology with peaks using an emulator approach | MNRAS 511, 2075 (2022), arXiv:2110.10135 |
195 | S. Pandey et al (DES collaboration) | Cross-correlation of DES Y3 lensing and ACT/Planck thermal Sunyaev Zel'dovich Effect II: Modeling and constraints on halo pressure profiles | Phys. Rev. D 105, 123526 (2022), arXiv:2108.01601 |
194 | M. Gatti, S. Pandey et al (DES collaboration) | Cross-correlation of DES Y3 lensing and ACT/Planck thermal Sunyaev Zel'dovich Effect I: Measurements, systematics tests, and feedback model constraints | Phys. Rev. D 105, 123525 (2022), arXiv:2108.01600 |
193 | U Andrade, D Anbajagane, R von Marttens, D. Huterer and J Alcaniz | A Test of the Standard Cosmological Model with Geometry and Growth | JCAP 11 (2021) 014, arXiv:2107.07538 |
192 | M. Lokken et al (DES collaboration) | Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: I. Evidence for thermal energy anisotropy using oriented stacking | Astrophys. J. 933, 134 (2022), arXiv:2107.05523 |
191 | A. Carnero Rosell et al (DES collaboration) | Dark Energy Survey Year 3 Results: Galaxy Sample for BAO Measurement | MNRAS 509, 778 (2022), arXiv:2107.05477 |
190 | T.M.C Abbott et al (DES collaboration) | Dark Energy Survey Year 3 Results: A 2.7% measurement of Baryon Acoustic Oscillation distance scale at redshift 0.835 | Phys. Rev. D 105, 043512 (2022), arXiv:2107.04646 |
189 | I. Ferrero et al (DES collaboration) | Dark Energy Survey Year 3 Results: Galaxy mock catalogs for BAO analysis | A&A 656, A106 (2021) arXiv:2107.04602 |
188 | T.M.C Abbott et al (DES collaboration) | Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing | Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 |
187 | E. Krause et al (DES collaboration) | Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation | arXiv:2105.13548 |
186 | J. DeRose et al (DES collaboration) | Dark Energy Survey Year 3 results: cosmology from combined galaxy clustering and lensing -- validation on cosmological simulations | Phys. Rev. D 105, 123520 (2022), arXiv:2105.13547 |
185 | A. Porredon et al (DES collaboration) | Dark Energy Survey Year 3 Results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample | Phys. Rev. D 106, 103530 (2022), arXiv:2105.13546 |
184 | S. Pandey et al (DES collaboration) | Dark Energy Survey Year 3 Results: Constraints on cosmological parameters and galaxy bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample | Phys. Rev. D 106, 043520 (2022), arXiv:2105.13545 |
183 | L. Secco et al (DES collaboration) | Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Modeling Uncertainty | Phys. Rev. D 105, 023515 (2021), arXiv:2105.13544 |
182 | A. Amon et al (DES collaboration) | Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Data Calibration | Phys. Rev. D 105, 023514 (2021), arXiv:2105.13543 |
181 | C. Sanchez, J. Prat et al (DES collaboration) | Dark Energy Survey Year 3 Results: Exploiting small-scale information with lensing shear ratios | Phys. Rev. D 105, 083529 (2022), arXiv:2105.13542 |
180 | J. Prat et al (DES collaboration) | Dark Energy Survey Year 3 Results: High-precision measurement and modeling of galaxy-galaxy lensing | Phys. Rev. D 105, 083528 (2022), arXiv:2105.13541 |
179 | M. Rodriguez-Monroy et al (DES collaboration) | Dark Energy Survey Year 3 Results: Galaxy clustering and systematics treatment for lens galaxy samples | MNRAS 511, 2665 (2022), arXiv:2105.13540 |
178 | N. Jeffrey et al (DES collaboration) | Dark Energy Survey Year 3 Results: curved-sky weak lensing mass map reconstruction | MNRAS 505, 4626 (2021), arXiv:2105.13539 |
177 | S. Lee et al (DES collaboration) | Probing gravity with the DES-CMASS sample and BOSS spectroscopy | MNRAS 509, 4982 (2021), arXiv:2104.14515 |
176 | S. Lee et al (DES collaboration) | Galaxy-galaxy lensing with the DES-CMASS catalogue: measurement and constraints on the galaxy-matter cross-correlation | MNRAS 509, 2033 (2021), arXiv:2104.11319 |
175 | B. Hayden, D. Rubin et al. | The HST See Change Program: I. Survey Design, Pipeline, and Supernova Discoveries | Astrophys. J. 912, 87 (2021), arXiv:2103.13285 |
174 | T. M. C. Abbott et al (DES collaboration) | The Dark Energy Survey Data Release 2 | Astrophys. J. Suppl. 255, 20 (2021), arXiv:2101.05765 |
173 | R. Cawthon et al (DES collaboration) | Dark Energy Survey Year 3 Results: Calibration of Lens Sample Redshift Distributions using Clustering Redshifts with BOSS/eBOSS | MNRAS 513, 5022 (2022), arXiv:2012.12826 |
172 | S. Everett et al (DES collaboration) | Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog | Astrophys. J. Suppl. 258, 15 (2022), arXiv:2012.12825 |
171 | W. Hartley et all (DES collaboration) | Dark Energy Survey Year 3 Results: Deep Field Optical + Near-Infrared Images and Catalogue | MNRAS 509, 3547 (2022), arXiv:2012.12824 |
170 | P. Lemos, M. Raveri, A. Campos, Y. Park, C. Chang, N. Weaverdyck, D. Huterer et al (DES collaboration) | Assessing tension metrics with Dark Energy Survey and Planck data | MNRAS 505, 6179 (2021), arXiv:2012.09554 |
169 | M. Gatti, G. Giannini et al (DES collaboration) | Dark Energy Survey Year 3 Results: Clustering Redshifts -- Calibration of the Weak Lensing Source Redshift Distributions with redMaGiC and BOSS/eBOSS | MNRAS 510, 1223 (2022), arXiv:2012.08569 |
168 | O. Friedrich et al (DES collaboration) | Dark Energy Survey Year 3 Results: Covariance Modelling and its Impact on Parameter Estimation and Quality of Fit | MNRAS 508, 3125 (2021), arXiv:2012.08568 |
167 | J. Myles et al (DES collaboration) | Dark Energy Survey Year 3 Results: Redshift Calibration of the Weak Lensing Source Galaxies | MNRAS 505, 4249 (2021), arXiv:2012.08566 |
166 | C. Doux, C. Chang et al (DES collaboration) | Consistency of cosmic shear analyses in harmonic and real space | MNRAS 503, 3796 (2021), arXiv:2011.06469 |
165 | A. Chen, D. Huterer, S. Lee et al (DES collaboration) | Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data | Phys. Rev. D 123, 123528 (2021), arXiv:2011.04606 |
164 | C. Doux et al (DES collaboration) | Dark Energy Survey internal consistency tests of the joint cosmological probes analysis with posterior predictive distributions | MNRAS 503, 2688 (2021), arXiv:2011.03410 |
163 | M. Gatti, E. Sheldon et al (DES collaboration) | Dark Energy Survey Year 3 Results: Weak Lensing Shape Catalogue | MNRAS 504, 4312 (2021), arXiv:2011.03408 |
162 | N. Sevilla-Noarbe et al (DES collaboration) | Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology | Astrophys. J. 254, 24 (2021), arXiv:2011.03407 |
161 | J. Muir, E. Baxter, V. Miranda, C. Doux, A. Ferté, C. D. Leonard, D. Huterer, et al (DES collaboration) | Dark Energy Survey Year 1 Results: Splitting Geometry and Growth to test LCDM | Phys. Rev. D 103, 023528 (2021), arXiv:2010.05924 |
160 | D. Huterer | Specific Effect of Peculiar Velocities on Dark-Energy Constraints from Type Ia Supernovae | Astrophys. J. Lett. 904, L28 (2020), arXiv:2010.05765 |
159 | C. To et al (DES collaboration) | Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances, Weak Lensing, and Galaxy Correlations | Phys. Rev. Lett. 126, 141301 (2021), arXiv:2010.01138 |
158 | E. O. Nadler et al (DES collaboration) | Milky Way Satellite Census III: Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies | Phys. Rev. Lett. 126 091101 (2021), arXiv:2008.00022 |
157 | H. J Huang, T. Eifler, R. Mandelbaum, G. Bernstein, A. Chen, A. Choi, J. García-Bellido, D. Huterer et al (DES collaboration) | Dark Energy Survey Year 1 Results: Constraining Baryonic Physics in the Universe | MNRAS 502, 6010 (2021), arXiv:2007.15026 |
156 | N. Weaverdyck and D. Huterer | Mitigating contamination in LSS surveys: a comparison of methods | MNRAS 503, 5061 (2021), arXiv:2007.14499 |
155 | E. Macaulay et al (DES collaboration) | Weak Lensing of Type Ia Supernovae from the Dark Energy Survey | MNRAS 496, 4051 (2020), arXiv:2007.07956 |
154 | A. Palmese, J. deVicente, M. E. S. Pereira, J. Annis, W. Hartley, K. Herner, M. Soares-Santos, M. Crocce, D. Huterer et al (DES collaboration) | A statistical standard siren measurement of the Hubble constant from the LIGO/Virgo gravitational wave compact object merger GW190814 and Dark Energy Survey galaxies | Astrophys. J. 900, L33 (2020), arXiv:2006.14961 |
153 | A. Tanoglidis et al (DES collaboration) | Shadows in the Dark: Low-Surface-Brightness Galaxies Discovered in the Dark Energy Survey | Astrophys. J. 252, 18 (2021), arXiv:2006.04294 | 152 | T. Abbott et al (DES collaboration) | Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances and Weak Lensing | Phys. Rev. D 102, 023509 (2020), arXiv:2002.11124 |
151 | J. Muir, G. Bernstein, D. Huterer et al (DES collaboration) | Blinding multi-probe cosmological experiments | MNRAS 494, 4454 (2020), arXiv:1911.05929 |
150 | P. Vielzeuf, A. Kovacs, U. Demirbozan, P. Fosalba, E. Baxter, N. Hamaus, D. Huterer et al (DES collaboration) | Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background | MNRAS 500, 464 (2020), arXiv:1910.02951 |
149 | A. J. Shajib et al. | STRIDES: A 3.9 per cent measurement of the Hubble constant from the strongly lensed system DES J0408-5354 | MNRAS 494, 6072 (2020), arXiv:1910.06306 |
148 | D. Schlegel et al. (Astro2020 paper) | The MegaMapper: a z > 2 spectroscopic instrument for the study of Inflation and Dark Energy | arXiv:1907.11171 |
147 | S. Adhikari and D. Huterer | Super-CMB fluctuations and the Hubble tension | Phys.Dark Univ. 28 (2020) 100539, arXiv:1905.02278 |
146 | S. Ferraro et al. (Astro2020 paper) | Inflation and Dark Energy from spectroscopy at 𝑧>2 | arXiv:1903.09208 |
145 | A. Kim et al. (Astro2020 paper) | Testing Gravity Using Type Ia Supernovae Discovered by Next-Generation Wide-Field Imaging Surveys | arXiv:1903.07652 |
144 | D. Green et al. (Astro2020 paper) | Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics | arXiv:1903.04763 |
143 | P. D. Meerburg et al. (Astro2020 paper) | Primordial Non-Gaussianity | arXiv:1903.04409 |
142 | J. Soltis, A. Farahi, D. Huterer and C. Michael Liberato | Percent-Level Test of Isotropic Expansion Using Type Ia Supernovae | Phys. Rev. Lett. 122, 091301 (2019), arXiv:1902.07189 |
141 | E. Macaulay et al (DES collaboration) | First Cosmological Results using Type Ia Supernovae from the Dark Energy Survey: Measurement of the Hubble Constant | MNRAS 486, 2184 (2019), arXiv:1811.02376 |
140 | T.M.C. Abbott et al (DES collaboration) | Cosmological Constraints from Multiple Probes in the Dark Energy Survey | Phys. Rev. Lett. 122, 071301 (2019), arXiv:1811.02375 |
139 | T.M.C. Abbott et al (DES collaboration) | Dark Energy Survey Year 1 Results: Constraints on Extended Cosmological Models from Galaxy Clustering and Weak Lensing | Phys. Rev. D 99, 123505 (2019), arXiv:1810.02499 |
138 | Y. Omori et al (DES collaboration) | Dark Energy Survey Year 1 Results: Cross-correlation between DES Y1 galaxy weak lensing and SPT+Planck CMB weak lensing | Phys. Rev. D 100, 043517 (2019), arXiv:1810.02441 |
137 | Y. Omori et al (DES collaboration) | Dark Energy Survey Year 1 Results: tomographic cross-correlations between DES galaxies and CMB lensing from SPT+Planck | Phys. Rev. D 100, 043501 (2019), arXiv:1810.02342 |
136 | T.M.C. Abbott et al (DES collaboration) | Dark Energy Survey Year 1 Results: Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions | Phys. Rev. D 100, 023541 (2019), arXiv:1810.02322 |
135 | S. Adhikari and D. Huterer | A new measure of tension between experiments | JCAP 01 (2019) 036, arXiv:1806.04292 |
134 | J. Muir, S. Adhikari and D. Huterer | The Covariance of CMB anomalies | Phys. Rev. D 98, 023521 (2018), arXiv:1806.02354 |
133 | X. Li, N. Weaverdyck, S. Adhikari, D. Huterer, J. Muir, and H-Y. Wu | The Quest for the Inflationary Spectral Runnings in the Presence of Systematic Errors | Astrophys. J. 862, 137 (2018), arXiv:1806.02515 |
132 | M.A. Troxel et al. (subset of DES collaboration) | Survey geometry and the internal consistency of recent cosmic shear measurements | MNRAS 479, 4498 (2018), arXiv:1804.10663 |
131 | N. MacCrann et al. (subset of DES collaboration) | DES Y1 Results: Validating Cosmological Parameter Estimation Using Simulated Dark Energy Surveys | MNRAS 480, 4614 (2018), arXiv:1803.09795 |
130 | T.M.C. Abbott et al (DES collaboration) | The Dark Energy Survey Data Release 1 | Astrophys. J. Suppl. 239, 2 (2018), arXiv:1801.03181 |
129 | T.M.C. Abbott et al (DES collaboration) | Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data | MNRAS 480, 3879 (2018), arXiv:1711.00403 |
128 | C. Guidorzi et al (18 authors) | Improved Constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817 | Astrophys. J., 851, L36 (2017) arXiv:1710.06426 |
127 | B.P. Abbott et al (gazillion authors) | A gravitational-wave standard siren measurement of the Hubble constant | Nature, 551, 85 (2017) arXiv:1710.05835 |
126 | N. Weaverdyck, J. Muir and D. Huterer | Integrated Sachs-Wolfe map reconstruction in the presence of systematic errors | Phys. Rev. D 97, 043515 (2018), arXiv:1709.08661 |
125 | D. Huterer and D.L. Shafer | Dark energy two decades after: Observables, probes, consistency tests | Rep. Prog. Phys. 81 (2018) 016901, arXiv:1709.01091 |
124 | M.A. Troxel et al. (DES collaboration) | Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear | Phys. Rev. D 98, 043528 (2018), arXiv:1708.01538 |
123 | T.M.C. Abbott et al. (DES collaboration) | Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing | Phys. Rev. D 98, 043526 (2018), arXiv:1708.01530 |
122 | H.-Y. Wu and D. Huterer | Sample variance in local measurements of the Hubble constant | MNRAS 471, 4946 (2017), arXiv:1706.09723 |
121 | D. Huterer, D. L. Shafer, D. Scolnic and F. Schmidt | Testing LCDM at the lowest redshifts with SN Ia and galaxy velocities | JCAP 05 (2017) 015, arXiv:1611.09862 |
120 | A. Stark, C.J. Miller and D. Huterer | Cosmology with Galaxy Cluster Phase Spaces | Phys. Rev. D 96, 023543 (2017), arXiv:1611.06886 |
119 | DESI collaboration | The DESI Experiment Part II: The Instrument Design | arXiv:1611.00037 |
118 | DESI collaboration | The DESI Experiment Part I: Science, Targeting, and Survey Design | arXiv:1611.00036 |
117 | A. Kovács, C. Sanchez, J. García-Bellido, S. Nadathur, R. Crittenden, D. Gruen, D. Huterer et al. (DES collaboration) | Imprint of DES super-structures on the Cosmic Microwave Background | MNRAS 465, 4166 (2017), arXiv:1610.00637 |
116 | N. MacCrann, J. Aleksić, A. Amara, S. L. Bridle, C. Bruderer, C. Chang, S. Dodelson, T.F. Eifler, E.M. Huff, D. Huterer et al. (DES collaboration) | Inference from the small scales of cosmic shear with current and future Dark Energy Survey data | MNRAS 465, 2567 (2017), arXiv:1608.01838 |
115 | C. Sánchez, J. Clampitt, A. Kovács, B. Jain, J. Garcia-Bellido, S. Nadathur, D. Gruen, N. Hamaus, D. Huterer et al. (DES collaboration) | Cosmic Voids and Void Lensing in the Dark Energy Survey Science Verification Data | MNRAS 465, 746 (2016), arXiv:1605.03982 |
114 | J. Muir and D. Huterer | Peeling off the late Universe: Reconstructing the ISW map with galaxy surveys | Phys. Rev. D 94, 043503 (2016), arXiv:1603.06586 |
113 | E. J. Baxter, J. Clampitt, T. Giannantonio, S. Dodelson, B. Jain, D. Huterer et al. (DES collaboration) | Joint Measurement of Lensing-Galaxy Correlations Using SPT and DES SV Data | MNRAS 461, 4099 (2016), arXiv:1602.07384 |
112 | D.J. Schwarz, C.J. Copi, D. Huterer and G.D. Starkman | CMB Anomalies after Planck | Class. and Quantum Gravity 33, Article ID 184001 (2016), arXiv:1510.07929 |
111 | M. Yoon and D. Huterer | Kinematic dipole detection with galaxy surveys: forecasts and requirements | Astrophys. J. 813, L18 (2015), arXiv:1509.05374 |
110 | D. Huterer, D. L. Shafer and F. Schmidt | No evidence for bulk velocity from type Ia supernovae | JCAP 12, 033 (2015), arXiv:1509.04708 |
109 | I. Jee, E. Komatsu, S. Suyu and D. Huterer | Time-delay Cosmography: Increased Leverage with Angular Diameter Distances | JCAP 04, 031 (2016), arXiv:1509.03310 |
108 | T. Giannantonio et al (DES collaboration) | CMB lensing tomography with the DES Science Verification galaxies | MNRAS 456, 3213 (2016), arXiv:1507.05551 |
107 | K.A. Hinton, A. Becker and D. Huterer | A User-Friendly Dark Energy Model Generator | arXiv:1506.05088 |
106 | D. Schwarz et al (10 authors) | Testing foundations of modern cosmology with SKA all-sky surveys | PoS AASKA14, 032 (2015), arXiv:1501.03820 |
105 | M. Alvarez et al (28 authors) | Testing Inflation with Large Scale Structure: Connecting Hopes with Reality | arXiv:1412.4671 |
104 | J. Bielefeld, D. Huterer and E. Linder | Cosmological Leverage from the Matter Power Spectrum in the Presence of Baryon and Nonlinear Effects | JCAP 1505, 023 (2015), arXiv:1411.3725 |
103 | E.J. Ruiz and D. Huterer | Banana Split: Testing the Dark Energy Consistency with Geometry and Growth | Phys. Rev. D 91, 063009 (2015), arXiv:1410.5832 |
102 | D. L. Shafer and D. Huterer | Multiplicative errors in the galaxy power spectrum: self-calibration of unknown photometric systematics for precision cosmology | MNRAS 447, 2961 (2015), arXiv:1410.0035 |
101 | M. Yoon, D. Huterer, C. Gibelyou, A. Kovacs and I. Szapudi | Dipolar modulation in number counts of WISE-2MASS sources | MNRAS 445, L60 (2014), arXiv:1406.1187 |
100 | A. Evrard, P. Arnault, D. Huterer and A. Farahi | A Model for Multi-property Galaxy Cluster Statistics | MNRAS 441, 3562 (2014), arXiv:1403.1456 |
99 | D.L. Shafer and D. Huterer | Chasing the phantom: A closer look at type Ia supernovae and the dark energy equation of state | Phys. Rev. D 89, 063510 (2014), arXiv:1312.1688 |
98 | C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman | Large-Scale Alignments from WMAP and Planck | MNRAS 449, 3458 (2015), arXiv:1311.4562 |
97 | C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman | Lack of large-angle TT correlations persists in WMAP and Planck | MNRAS 451, 2978 (2015), arXiv:1310.3831 |
96 | B. Jain et al. | Novel Probes of Gravity and Dark Energy | arXiv:1309.5389 |
95 | S. Dodelson et al. | Dark Energy and CMB | Astropart. Phys., 63, 1 (2015), arXiv:1309.5386 |
94 | D. Huterer et al. | Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion | Astropart. Phys., 63, 23 (2015), arXiv:1309.5385 |
93 | J. Newman et al. | Spectroscopic Needs for Imaging Dark Energy Experiments: Photometric Redshift Training and Calibration | Astropart. Phys., 63, 81 (2015), arXiv:1309.5384 |
92 | C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman | Large-Angle CMB Suppression and Polarisation Predictions | MNRAS 434, 3590 (2013), arXiv:1303.4786 |
91 | W. Fang, A. Becker, D. Huterer and E. Lim | Joint Minkowski Functionals and Bispectrum Constraints on Non-Gaussianity in the CMB | Phys. Rev. D 88, 041302 (2013), arXiv:1303.4381 |
90 | H.-Y. Wu and D. Huterer | Impact of systematic uncertainties in N-body simulations on the precision cosmology from galaxy clustering | MNRAS 434, 2256 (2013), arXiv:1303.0835 |
89 | D. Huterer, C. Cunha, and and W. Fang | Calibration errors unleashed: effects on cosmological parameters and requirements for large-scale structure surveys | MNRAS 432, 2945 (2013), arXiv:1211.1015 |
88 | A. Becker and D. Huterer | First constraints on the running of non-Gaussianity | Phys. Rev. Lett. 109, 121302 (2012), arXiv:1207.5788 |
87 | E.J. Ruiz, D.L. Shafer, D. Huterer, and A. Conley | Principal components of dark energy with SNLS supernovae: the effects of systematic errors | Phys. Rev. D 86, 103004 (2012), arXiv:1207.4781 |
86 | C. Cunha, D. Huterer, H. Lin, M. Busha and R. Wechsler | Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements | MNRAS 444, 129 (2014), arXiv:1207.3347 |
85 | A. Becker, D. Huterer, and K. Kadota | Constraining Scale-Dependent Non-Gaussianity with Future Large-Scale Structure and the CMB | JCAP 1212:034 (2012), arXiv:1206.6165 |
84 | C. Gibelyou and D. Huterer | Dipoles in the Sky | MNRAS 427, 1994 (2012), arXiv:1205.6476 |
83 | G.D. Starkman, C.J. Copi, D. Huterer and D.J. Schwarz | The Oddly Quiet Universe: How the CMB Challenges Cosmology's Standard Model | arXiv:1201.2459 |
82 | C. Cunha, D. Huterer, M. Busha and R. Wechsler | Sample variance in photometric redshift calibration: cosmological biases and survey requirements | MNRAS 423, 909 (2012), arXiv:1109.5691 |
81 | D. Schlegel et al. (142 authors) | The BigBOSS Experiment | arXiv:1106.1706 |
80 | E. Calabrese, D. Huterer, E.V. Linder, A. Melchiorri, and L. Pagano | Limits on Dark Radiation, Early Dark Energy, and Relativistic Degrees of Freedom | Phys. Rev. D 83, 023504 (2011), arXiv:1103.4132 |
79 | C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman | Bias in low-multipole CMB reconstructions | MNRAS 418, 505 (2011), arXiv:1103.3505 |
78 | M. March, R. Trotta, L. Amendola and D. Huterer | Robustness to systematics for future dark energy probes | MNRAS 415, 143 (2011), arXiv:1101.1521 |
77 | D. Huterer, E. Komatsu and S. Shandera | Testing the Gaussianity and Statistical Isotropy of the Universe (Editorial article) | Advances in Astronomy vol. 2010, Article ID 697147 (2010), arXiv:1012.3744 |
76 | M. Mortonson, W. Hu and D. Huterer | Simultaneous Falsification of LambdaCDM and Quintessence with Massive, Distant Clusters | Phys. Rev. D 83, 023015 (2011), arXiv:1011.0004 |
75 | E. Calabrese, R. de Putter, D. Huterer, E.V. Linder and A. Melchiorri | Future CMB Constraints on Early, Cold, or Stressed Dark Energy | Phys. Rev. D 83, 023011 (2011), arXiv:1010.5612 |
74 | S. Shandera, N. Dalal and D. Huterer | A generalized local ansatz and its effect on halo bias | JCAP 1103:017 (2011), arXiv:1010.3722 |
73 | D. Huterer | The Accelerating Universe | arXiv:1010.1162 |
72 | C. Zunckel, D. Huterer, and G.D. Starkman | Testing the statistical isotropy of large scale structure with multipole vectors | Phys. Rev. D 84, 043005 (2011), arXiv:1009.4701 |
71 | A. Becker, D. Huterer, and K. Kadota | Scale-Dependent Non-Gaussianity as a Generalization of the Local Model | JCAP 1101:006 (2011), arXiv:1009.4189 |
70 | C. Gibelyou, D. Huterer, and W. Fang | Detectability of large-scale power suppression in the galaxy distribution | Phys. Rev. D 82, 123009 (2010), arXiv:1007.0757 |
69 | C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman | Large-Angle Anomalies in the CMB | Advances in Astronomy vol. 2010, Article ID 847541 (2010), arXiv:1004.5602 |
68 | D. Sarkar, D. Huterer, C.J. Copi, G.D. Starkman and D.J. Schwarz | Missing Power vs low-l Alignments in the Cosmic Microwave Background: No Correlation in the Standard Cosmological Model | Astropart. Phys., 34, 591 (2010), arXiv:1004.3784 |
67 | M. Mortonson, D. Huterer and W. Hu | Figures of merit for present and future dark energy probes | Phys. Rev. D 82, 063004 (2010), arXiv:1004.0236 |
66 | C. Cunha, D. Huterer, and O. Doré | Primordial non-Gaussianity from the covariance of galaxy cluster counts | Phys. Rev. D 82, 023004 (2010), arXiv:1003.2416 |
65 | A.P. Hearin, A.R. Zentner, Z. Ma, and D. Huterer | A General Study of The Influence of Catastrophic Photometric Redshift Errors on Cosmology with Cosmic Shear Tomography | Astrophys. J. 720, 1351 (2010), arXiv:1002.3383 |
64 | R. de Putter, D. Huterer and E. Linder | Measuring the Speed of Dark: Detecting Dark Energy Perturbations | Phys. Rev. D 81, 103513 (2010), arXiv:1002.1311 |
63 | D. Huterer | Weak lensing, dark matter and dark energy | Gen. Rel. Grav. 42, 2177 (2010), arXiv:1001.1758 |
62 | M. Mortonson, W. Hu and D. Huterer | Testable dark energy predictions from current data | Phys. Rev. D 81, 063007 (2010), arXiv:0912.3816 |
61 | R. Zhang and D. Huterer | Disks in the sky: A reassessment of the WMAP "cold spot" | Astropart. Phys., 33, 69 (2010), arXiv:0908.3988 |
60 | M. Mortonson, W. Hu and D. Huterer | Hiding dark energy transitions at low redshift | Phys. Rev. D 80, 067301 (2009), arXiv:0908.1408 |
59 | C. Cunha, D. Huterer and J. Frieman | Constraining Dark Energy with Clusters: Complementarity with Other Probes | Phys. Rev. D 80, 063532 (2009), arXiv:0904.1589 |
58 | G. Bernstein and D. Huterer | Catastrophic photometric redshift errors: weak lensing survey requirements | MNRAS 401, 1399 (2010), arXiv:0902.2782 |
57 | D. Huterer | The Road to Dark Energy | Mod. Phys. Lett 23, 1346 (2008) |
56 | A. Albrecht et al (the FoMSWG - Figure of Merit Science Working Group) | Findings of the Joint Dark Energy Mission Figure of Merit Science Working Group | arXiv:0901.0721 |
55 | M. Mortonson, W. Hu and D. Huterer | Falsifying Paradigms for Cosmic Acceleration | Phys. Rev. D 79, 023004 (2009), arXiv:0810.1744 |
54 | C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman | No large-angle correlations on the non-Galactic microwave sky | MNRAS 399, 295 (2009), arXiv:0808.3767 |
53 | K.M. Smith and D. Huterer | No Evidence for the Cold Spot in the NVSS Radio Survey | MNRAS 403, 2 (2010), arXiv:0805.2751 |
52 | J. Frieman, M. Turner and D. Huterer | Dark Energy and the Accelerating Universe | Ann. Rev. Astron. Astrophys. 46, 385 (2008), arXiv:0803.0982 |
51 | G. Zhao, D. Huterer and X. Zhang | High-resolution temporal constraints on the dynamics of dark energy | Phys. Rev. D 77, 121302 (2008), arXiv:0712.2277 |
50 | N. Dalal, O. Doré, D. Huterer and A. Shirokov | The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects | Phys. Rev. D 77, 123514 (2008), arXiv:0710.4560 |
49 | M.S.Turner and D. Huterer | Cosmic Acceleration, Dark Energy and Fundamental Physics | J. Phys. Soc. Jpn. 76, 111015 (2007), arXiv:0706.2186 |
48 | L.M. Krauss, K. Jones-Smith and D. Huterer | Dark Energy, a Cosmological Constant and Type Ia Supernovae | New J. Phys. 9, 141 (2007), astro-ph/0701692 |
47 | P.-S. Corasaniti, D. Huterer and A. Melchiorri | Exploring the Dark Energy Redshift Desert with the Sandage-Loeb Test | Phys. Rev. D 75, 062001 (2007), astro-ph/0701433 |
46 | D. Huterer and H.V. Peiris | Dynamical behavior of generic quintessence potentials: constraints on key dark energy observables | Phys. Rev. D 75, 083503 (2007), astro-ph/0610427 |
45 | D. Huterer and E.V. Linder | Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy | Phys. Rev. D 75, 023519 (2007), astro-ph/0608681 |
44 | D. Huterer | Mysteries at Universe's Largest Observable Scales | New Astronomy Reviews 50, 868 (2006), astro-ph/0608318 |
43 | W. Hu, D. Huterer and K. Smith | Supernovae, Lensed CMB and Dark Energy | Astrophys. J. Lett. 650, L13 (2006), astro-ph/0607316 |
42 | C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman | The Uncorrelated Universe: Statistical Anisotropy and the Vanishing Angular Correlation Function in WMAP Years 1-3 | Phys. Rev. D 75, 023507 (2007), astro-ph/0605135 |
41 | A. Cooray, D. Huterer and D. Holz | Problems with Small Area Surveys: Lensing Covariance of Supernova Distance Measurements | Phys. Rev. Lett. 96, 021301 (2006), astro-ph/0509581 |
40 | A. Cooray, D. Holz and D. Huterer | Cosmology from supernova magnification maps | Astrophys. J. 637, L77 (2006), astro-ph/0509579 |
39 | C. Gordon, W. Hu, D. Huterer and T. Crawford, | Spontaneous Isotropy Breaking: A Mechanism for CMB Multipole Alignments | Phys. Rev. D, 72, 103002 (2005), astro-ph/0509301 |
38 | C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman | On the large-angle anomalies of the microwave sky | MNRAS 367, 79 (2006), astro-ph/0508047 |
37 | SNAP collaboration | Probing Dark Energy via Weak Gravitational Lensing with the SuperNova Acceleration Probe (SNAP) | White paper to the Dark Energy Task Force astro-ph/0507460 |
36 | SNAP collaboration | Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae | White paper to the Dark Energy Task Force astro-ph/0507459 |
35 | SNAP collaboration | Seeing the Nature of the Accelerating Physics: It's a SNAP | White paper to the Dark Energy Task Force astro-ph/0507458 |
34 | Z. Ma, W. Hu and D. Huterer | Effect of Photometric Redshift Errors on Weak Lensing Tomography | Astrophys. J., 636, 21 (2006), astro-ph/0506614 |
33 | D. Huterer, M. Takada, G. Bernstein and B. Jain | Systematic Errors in Future Weak Lensing Surveys: Requirements and Prospects for Self-Calibration | MNRAS 366, 101 (2006), astro-ph/0506030 |
32 | E. V. Linder and D. Huterer | How many dark energy parameters? | Phys. Rev. D., 72, 043509 (2005) astro-ph/0505330 |
31 | D. Huterer and M. White | Nulling Tomography with Weak Gravitational Lensing | Phys. Rev. D., 72, 043002 (2005) astro-ph/0501451 |
30 | D. Huterer and M. Takada | Calibrating the Nonlinear Matter Power Spectrum: Requirements for Future Weak Lensing Surveys | Astropart. Phys., 23, 369 (2005), astro-ph/0412142 |
29 | D. Huterer and T. Vachaspati | Distribution of Singularities in the Cosmic Microwave Background Polarization | Phys. Rev. D., 72, 043004 (2005) astro-ph/0405474 |
28 | SNAP collaboration | Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy | PASP (submitted) astro-ph/0405232 |
27 | D. Huterer, C.R. Keeton and C.-P. Ma | Effects of Ellipticity and Shear on Gravitational Lens Statistics | Astrophys. J., 624, 34 (2005), astro-ph/0405040 |
26 | D. Huterer and A. Cooray | Uncorrelated Estimates of Dark Energy Evolution | Phys. Rev. D, 71, 023506 (2005), astro-ph/0404062 |
25 | D.J. Schwarz, G.D. Starkman, D. Huterer and C.J. Copi | Is the low-ell microwave background cosmic? | Phys. Rev. Lett., 93, 221301 (2004), astro-ph/0403353 |
24 | D. Huterer, A. Kim, L.M. Krauss and T. Broderick | Redshift Accuracy Requirements for Future Supernova and Number Count Surveys | Astrophys. J., 615, 595 (2004), astro-ph/0402002 |
23 | C.J. Copi, D. Huterer and G.D. Starkman | Multipole Vectors---a new representation of the CMB sky and evidence for statistical anisotropy or non-Gaussianity at 2 <= l <= 8 | Phys. Rev. D, 70, 043515 (2004), astro-ph/0310511 |
22 | D. Huterer and C.-P. Ma | Constraints on Dark Energy and the Inner Cluster Mass Profile from Strong Lensing Statistics | Astrophys. J. Lett., 600, L7 (2004), astro-ph/0307301 |
21 | D. Huterer and T. Vachaspati | Gravitational Lensing by Cosmic Strings in the Era of Wide-Field Surveys | Phys. Rev. D., 68, 041301 (2003), astro-ph/0305006 |
20 | J. Rhodes et al. (SNAP collaboration) | Weak Lensing from Space I: Prospects for the Supernova/Acceleration Probe | Astropart. Phys., 20, 377 (2004), astro-ph/0304417 |
19 | A. Cooray, D. Huterer and D. Baumann | Growth Rate of Large Scale Structure as a Powerful Probe of Dark Energy | Phys. Rev. D. 69 027301 (2004), astro-ph/0304268 |
18 | A.N. Davis, D. Huterer and L.M. Krauss | Strong lensing constraints on the velocity dispersion and density profile of elliptical galaxies | MNRAS 344 1029 (2003), astro-ph/0210494 |
17 | E. V. Linder and D. Huterer | Why Supernovae at z>1 are needed to Probe Dark Energy | Phys. Rev. D. 67 081303 (2003), astro-ph/0208138 |
16 | J.A. Frieman, D. Huterer, E.V. Linder and M.S. Turner | Probing Dark Energy with Supernovae: Exploiting Complementarity with the Cosmic Microwave Background | Phys. Rev. D. 67 083505 (2003), astro-ph/0208100 |
15 | D. Huterer and G.D. Starkman | Parameterization of Dark-Energy Properties: a Principal-Component Approach | Phys. Rev. Lett. 90 031301 (2003), astro-ph/0207517 |
14 | D. Huterer and M. White | Weak Lensing as a Calibrator of the Cluster Mass-Temperature Relation | Astrophys. J. Lett. 578 L95 (2002), astro-ph/0206292 |
13 | D. Huterer, G.D. Starkman and M. Trodden | Is the Universe Inflating? Dark Energy and the Future of the Universe | Phys. Rev. D. 66 043511 (2002) astro-ph/0202256 |
12 | D. Huterer | Weak Lensing and Dark Energy | Phys. Rev. D. 65 063001 (2002) astro-ph/0106399 |
11 | A. Cooray, W. Hu, D. Huterer and M. Joffre | Measuring Angular Diameter Distances through Halo Clustering | Astrophys. J. 557 L7 (2001), astro-ph/0105061 |
10 | D. Huterer, E.V. Linder and J. Weller | Constraints on Dark Energy and Its Models | Yellow Book on Dark Energy, SNOWMASS 2001, eds. E. V. Linder |
9 | D. Huterer and M.S. Turner | Constraining the Properties of Dark Energy | proceedings of 20th Texas Symposium on Relavistic Astrophysics astro-ph/0103175 |
8 | D. Huterer and M.S. Turner | Probing Dark Energy: Methods and Strategies | Phys. Rev. D. 64 123527 (2001), astro-ph/0012510 |
7 | D. Huterer, L. Knox and R.C. Nichol | The Angular Power Spectrum of EDSGC galaxies | Astrophys. J. 555 547 (2001), astro-ph/0011069 |
6 | D. Huterer and M.S. Turner | Optimal Supernova Search Strategies | proceedings of Dark Matter 2000, ed. D. Cline astro-ph/0006419 |
5 | D. Huterer and M.S. Turner | On the Degree of Scale Invariance of Inflationary Perturbations | Phys. Rev. D. 62 063503 (1999), astro-ph/9908157 |
4 | D. Huterer and M.S. Turner | Prospects for Probing the Dark Energy via Supernova Distance Measurements | Phys. Rev. D. 60 081301 (1999), astro-ph/9808133 |
3 | A.R. Cooray and D. Huterer | Gravitational Lensing as a Probe of Quintessence | Astrophys. J. 513 L95 (1999), astro-ph/9901097 |
2 | D. Huterer, K.I. Paularena and A. Szabo, | Observation and Analysis of Selected IMP 8 and WIND Bow Shock Crossings in Late 1994 | J. Geophys. Res. 102 A9 19761 (1997) |
1 | D. Huterer, D.D. Sasselov and P.L. Schechter | Distances to Nearby Galaxies: Combining Fragmentary Data Using Four Different Methods | Astron. J. 110 2705 (1995), astro-ph/9508122 |